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Cytolethal distending toxin (CDT), one of the most important genotoxins, is produced by
several gram-negative bacteria and is involved in bacterial pathogenesis. Recent studies
have shown that bacteria producing this peculiar genotoxin target host DNA, which
potentially contributes to development of cancer. In this review, we highlighted the recent
studies focusing on the idea that CDT leads to DNA damage, and the cells with
inappropriately repaired DNA continue cycling, resulting in cancer development.
Understanding the detailed mechanisms of genotoxins that cause DNA damage might
be useful for targeting potential markers that drive cancer progression and help to
discover new therapeutic strategies to prevent diseases caused by pathogens.
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INTRODUCTION

Bacterial genotoxins are toxins that trigger single-strand breaks (SSBs) or double-strand breaks
(DSBs) on DNA in target host cells, and are functionally homologous to mammalian type I
deoxyribonuclease (DNase I), resulting in the activation of DNA damage response (DDR) (1). These
responses subsequently lead to cell senescence, apoptosis, or genomic instability, which favors
tumor initiation and progression. Three bacterial virulence factors are now characterized as
genotoxins: cytolethal distending toxin (CDT) in gram-negative bacteria, typhoid toxin produced
by Salmonella enterica serovar Typhi, and colibactin produced by the phylogenetic group B2
Escherichia coli (2). CDT was discovered in E. coli by Johnson and Lior in 1987 (3), and similar toxin
activities were found in two other enteric pathogens, Shigella spp (3). and Campylobacter spp (4).
CDT is capable of modulating eukaryotic cell cycle by pausing the G2/M transition, and was thus
further defined as cyclomodulins (5). To clarify the possible virulence factors in enteric pathogens,
cloning and gene sequencing were performed within different strains of E. coli and three open
reading frames (ORFs) in an operon were identified, known as cdtA, cdtB, and cdtC (6, 7). Among
the proteins encoded by these genes, CdtB was demonstrated to harbor nuclease activity (8–10).
CdtA and CdtC are required for delivering CdtB into target cells, which allows for CdtB to
translocate into the nucleus and cause DNA damage (11, 12). The catalytic activity of CdtB in
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target cells can activate DDR, which increases genomic
instability, disturbs the cell cycle, and establishes a chronic
proinflammatory environment (13). Since these characteristics
are closely associated with cancer development, it is proposed
that bacterial infections play a role in the neoplastic process.
This review highlights the current state of knowledge on
the interaction of CDT with host DNA and its role in
tumor progression.
BACTERIAL INFECTIONS INDUCE
CANCER DEVELOPMENT

Cancer risk is generally attributed to hereditary, genetic,
environmental, and lifestyle factors (14). The contribution of
infectious agents to cancer development is often underappreciated.
In fact, more than 16% of cancer cases are related to infectious agents
worldwide (15). Persistent infection-induced chronic inflammation,
which is likely to be associated with the secretion of virulence factors,
ultimately facilitates oncogenic processes in hosts (16–18). Bacterial
toxins disrupt cellular signals, including cell proliferation, cell cycle
progression, and DNA repair, and dysregulation of either of which is
intimately intertwined with oncogenesis (19). For instance,
Helicobacter pylori, remaining the most notorious pathogen to
cause cancer, has been identified as a group 1 carcinogen by the
International Agency for Research on Cancer since 1994 (20). It can
secrete cytotoxin-associated gene A (CagA), which empowers cells
with numerous cancerous traits, including cell death resistance,
adherence junctional defects, and genomic instability after its entry
into gastric epithelial cells via type IV secretion system (20). In
addition, Salmonella species produce AvrA protein, a deubiquitinase
that inhibits b-catenin ubiquitination to promote colonic epithelial
cell proliferation (21). Enterotoxigenic Bacteroides fragilis secretes B.
fragilis toxin (BFT), a zinc-dependentmetalloprotease that can induce
colitis and colorectal cancer (CRC) in multiple intestinal neoplasia
(Min) mice (22, 23). Notably, with the growing number of studies on
microbiota, genotoxin-producing bacteria have also been identified as
potential carcinogens (24–27). In addition, other gastrointestinal
tract-dwelling pathogens reported to produce CDT, including C.
jejuni and Helicobacter hepaticus, may also have an impact on
carcinogenesis (28–31). Collectively, the above studies indicate that
bacteria together with their virulence factors not only cause infectious
diseases, but also promote cancer development (Table 1). Therefore,
the mechanisms involved in cancer development caused by bacteria
and their toxins deserve further investigation.
BACTERIAL GENOTOXINS AND THEIR
BIOLOGICAL FUNCTIONS

Among the bacterial genotoxins, CDT is the first to be
characterized and shown to cause DSBs (8, 40). In most CDT-
harboring bacteria, the gene cluster encoding CDT subunits,
consisting of adjacent or slightly overlapping cdtA, cdtB, and
cdtC, is located on the chromosome (41). Special exceptions
Frontiers in Immunology | www.frontiersin.org 2
occur in some E. coli strains, in which the operon is found on a
large conjugative plasmid called pVir (42). The location of the cdt
cluster differs in the genomes of different species but is well
conserved within the same species (43). In most cases, the
expression of all three genes is indispensable for CDT toxicity
(44), although the identified cdt is mainly composed of three
ORFs (cdtA, cdtB, and cdtC), apart from Salmonella enterica
serovar Typhi (S. Typhi). Notably, S. Typhi cdt contains a
conserved cdtB, whereas cdtA and cdtC are substituted by
genes encoding two homologs of the pertussis toxins, referred
to as pertussis-like toxins A and B (PltA and PltB) (45).

Studies have analyzed the prevalence of CDT production
in different bacterial species, including C. jejuni , A.
actinomycetemcomitans, H. ducreyi, etc., from clinical specimens,
and revealed that the majority of these species produce stable
amounts of CDT (46–49). CDT is a prominent virulence factor of
CDT-producing bacteria and aids in effective tissue colonization,
thereby promoting potent infection by breaking down host defense
(50). The dampened host defense mainly results from: (i) disrupted
epithelial barrier, which is caused by CDT-induced cell cycle arrest
and subsequent cell death in epithelial cells (51); and (ii) impaired
host immunity, which is caused by the extreme sensitivity of
lymphocytes to CDT cytotoxicity and altered macrophage
functions (52, 53). To perform such sophisticated tasks, the CDT
must first enter the cells to exert its activity. CDT holotoxin contains
one active subunit (CdtB), which requires two binding subunits
(CdtA and CdtC) to facilitate its transport through the cell
membrane (54). The homology of CDT subunits varies among
different bacterial species, and the pairwise identity of CdtA and
CdtC ranges from 19% to 95%. CdtB appears to be the most
conserved, with 45% sequence identity, even between the least-
related CDTs (55). As the active component, CdtB has been
demonstrated to share striking similarity with the DNase I
protein family (56). At the sequence level, CdtB possesses the
essential residues responsible for DNase I enzymatic activities,
including residues important in active site and Mg2+-binding site
(40). At the 3D structure level, CdtB exhibits the canonical
characteristics of DNase-like protein: stranded b-sandwich
flanked with a-helix and loops (57). Thus, the final destination
for CdtB is the cell nucleus, where it can induce DSBs and
immediately trigger DNA damage-dependent checkpoint
activation (58, 59). Subsequently, stalling of cell cycle progression
occurs at G1/S or G2/M transition to block cell division and allow
for DNA repair (60).

Binding of CDT holotoxin to the cell membrane primarily
depends on CdtA and CdtC. These two subunits adopt a ricin-
like lectin structure, forming an aromatic patch and a deep
groove on the protein surface, which play key roles in cell
surface recognition and association with specific membrane
components (61, 62). Despite the specific receptor unidentified,
several studies have highlighted the requirement of lipid rafts
(sphingolipid- and cholesterol-rich regions on the membrane)
for CdtA and CdtC binding to the cell membrane (63–65).
Combined with the fact that the deep groove in the holotoxin
structure is rather hydrophobic, it is implied that the binding
subunits may contain a cholesterol recognition amino acid
November 2021 | Volume 12 | Article 760451
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consensus sequence (CRAC)-like region. Indeed, in further motif
analysis, the CRAC site has been identified in CdtC (64, 66).
Many molecular mechanisms remain unclear for the subsequent
internalization and intracellular transport processes. In addition,
it is suggested that these pathways may vary among bacterial
species and are also influenced by a broad range of cell types
being intoxicated by CDT (67). Nevertheless, a general concept is
that after the binding of CDT holotoxin, CdtA remains on the
membrane, while CdtB and CdtC are internalized into the
cytosol. Only CdtB is delivered to other subcellular
compartments and ultimately to the nucleus (56, 68). Upon
reaching the nucleus, CdtB exerts its DNase activity to cause
DNA damage, which is possibly SSBs with low-dose treatment,
and DSBs with high-dose treatment (69). The triggered DDR is
dominantly orchestrated by phosphatidylinositol 3-kinase
(PI3K)-like protein kinase ataxia telangiectasia mutated (ATM)
(70, 71). Activation of ATM simultaneously causes the
phosphorylation of histone H2AX (gH2AX) as well as the
recruitment of Mre11-Rad50-Nbs1 (MRN) complex, which
provides a platform for DNA repair, and sets off checkpoint
responses via the phosphorylation of CHK2 and p53, resulting in
cell cycle arrest thus inhibiting cell proliferation (Figure 1) (72).
In most cases, DNA damage becomes way too devastating, and
the repair system fails to rescue the situation, which consequently
leads to cell death (73, 74) or senescence (75–77). However, in a
few cases the intoxicated cells bypass death; these cells escape the
built-in carcinogenesis barrier of cell death/senescence and are
likely to develop a tendency for cancer formation, including
genomic instability, heightened mutation frequency, and
anchorage-independent cell growth (13, 78, 79).
GENOTOXICITY AND CANCER
DEVELOPMENT

Since the discovery of genotoxin, its DNA-damaging activity has
long been considered a powerful cell-killing strategy. However,
Frontiers in Immunology | www.frontiersin.org 3
in recent years, its role in pathogenesis has started to appear in a
completely different perspective. The connection between
genotoxins and cancer has been assessed through both gut
microbiota analysis and epidemiology profiling. The research
revealed a higher prevalence of cdt and pks (gene encoding
colibactin)-positive E. coli in the gut microbiome of patients
with inflammatory bowel disease and CRC than in the non-
cancer group (26, 80). Moreover, a mutational pattern
characteristic of colibactin exposure was found to be enriched
in the sequencing data of two independent cohorts of primary
CRC tumors and CRC metastases (81). Several in vivo studies
also validated the potential of genotoxin to increase the risk of
malignancy. A/JCr mice developed hepatic dysplastic nodules
after chronic infection with Helicobacter hepaticus (34).
H. hepaticus infection causes chronic hepatitis; however, the
progression of inflammation toward dysplasia was found to be
associated with the presence of CDT, which upregulates a subset
of proinflammatory mediators, and increases hepatocyte
proliferation as well as mRNA expression of anti-apoptotic
proteins (34). Moreover, invasive carcinoma can be detected in
susceptible mice exposed to H. hepaticus but not in those
exposed to the isogenic cdtB mutant (35). The study partly
explained that CDT affects Stat-3 signaling, thereby promoting
oncogenic processes. Similarly, persistent infection with CDT-
harboring C. jejuni resulted in tumor formation in ApcMin/+ mice
fed with 1% dextran sulfate sodium (DSS) (28). The developed
tumor number and tumor size were significantly reduced when
the infecting bacteria possessed mutated cdtB. Additionally,
human colonic epithelial cells with defective genes commonly
observed in CRC models are prone to micronucleus formation
and anchorage-independent cell growth after CDT treatment
(79). Collectively, these findings indicate that the cell response to
genotoxin intoxication appears to be detrimental, but not
necessarily destructive.

To elucidate the detailed mechanisms behind this
phenomenon, numerous studies have been conducted in recent
years. Generally, CDT-intoxicated cells tend to enter cell cycle
arrest as soon as the DNA damage takes place; however,
TABLE 1 | The relationships between bacterial pathogens, virulence factors, and cancers in the animal models.

Bacterium (toxin) Related cancer Animal model

C. jejuni (CdtB) Colorectal cancer Germ-free ApcMin/+/DSS mice (28)
CoPEC (Colibactin) Colorectal cancer ApcMin/+ mice (24, 25)

AOM–treated Il10−/− mice (26)
ApcMin/+; Il10−/− mice (27)

E. coli Prostate cancer PhIP-treated mice (32)
ETBF (BFT) Colorectal cancer ApcMin/+ mice (22)
F. nucleatum Breast cancer Orthotropic AT3 C57BL/6 mice (33)
H. hepaticus (CDT) Hepatocellular carcinoma A/JCr mice (34)
H. hepaticus (CDT) Intestinal carcinoma 129/SvEv Rag2−/− mice (35)
H. pylori (CagA) Gastric adenocarcinoma CagA transgenic mice (36)
H. pylori (CagA) Intestinal adenocarcinoma

Small cell carcinoma
CagA transgenic zebrafish with p53 loss (37)

P. gingivalis
F. nucleatum

Oral squamous cell carcinoma 4NQO-treated mice (38)

Salmonella (AvrA) Colorectal cancer AOM/DSS-treated mice (39)
N

4NQO, 4-nitroquinoline-1-oxide; AOM, azoxymethane; BFT, B. fragilis toxin; CoPEC, colibactin-producing E. coli; DSS, dextran sulfate sodium; E. coli, Escherichia coli; ETBF,
enterotoxigenic Bacteroides fragilis; F. nucleatum, Fusobacterium nucleatum; H. hepaticus, Helicobacter hepaticus; H. pylori, Helicobacter pylori; Min, multiple intestinal neoplasia;
P. gingivalis, Porphyromonas gingivalis; PhIP, 2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine.
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a proportion of cells that manage to tolerate DNA damage
induced by CDT and persist cycling have been identified, and
further analysis indicated that these cells showed signatures of
malignant transformation (13). As a consequence of dampened
DDR and the slowing of replication fork velocity, the genetic
stability and integrity are disrupted, which was observed through
elevated fragile sites expression and chromosome aberrations
(13, 82). As DNA lesions continue to accumulate, they increase
the risk of mutation occurrence and are more likely to lead the
cells down the path of pro-cancerous progression. Additionally,
unrepaired DNA lesions can lead to micronuclei formation
after cell division, which causes a proinflammatory response
once micronuclei are sensed as cytosolic DNA and triggers the
cGAS-STING pathway (83).

On the other hand, the master regulator of CDT-triggered
DDR, ATM, transduces not only the DNA repair signal, but also
activates a survival pathway involving p38 mitogen-activated
protein kinase (MAPK) and integrin b1 (13, 78, 84). As its name
indicates, CDT causes the distension morphology of the
intoxicated cells, which has been examined to be associated
with the formation of actin stress fiber (85). This phenomenon
Frontiers in Immunology | www.frontiersin.org 4
raised the possibility that there might be an intriguing crosstalk
between DNA damage and cytoskeleton arrangement. Later
studies identified a small GTPase (RhoA) as a crucial molecule
in this potential signaling pathway (59). RhoA mainly
participates in the coordination of actin cytoskeleton
reorganization and focal adhesion, which may contribute to
tumor invasion and metastasis (86). It can be activated by a
nuclear-localized guanine nucleotide exchange factor (GEF)
Net1 (87), the activation of which requires dephosphorylation
at the inhibitory site Ser152 (88). The detailed molecular
mechanism of how the Net1/RhoA response is triggered
remains obscure; however, the participation of ATM and flap
structure-specific endonuclease 1 (FEN1) has been implied (59,
89). The downstream pathway of RhoA diverges into p38 MAPK
and Rho-associated kinase (ROCK) signaling. Aside from
a plethora of reports concerning the proinflammatory effect
of p38 MAPK (90–92), it has also been reported that sustained
p38 MAPK is vital for cell survival under genotoxic stress (13, 93,
94). In parallel, ROCK signaling manipulates the stress
fiber formation and cellular contractility (95). Moreover,
ATM signaling can act as an inside-out activation signal for
FIGURE 1 | Carcinogenic induction caused by CDT. Binding of CdtA and CdtC to lipid rafts facilitates the entry of CdtB and CdtC. In the cytoplasm, CdtB
dissociates with CdtC and translocates into the nucleus alone. As a DNase, CdtB damages the host DNA and immediately triggers the activation of ATM, which is
involved in the formation of monomer and biochemical modifications including phosphorylation and acetylation. (1) Activated ATM targets H2AX, phosphorylated on
Ser139 (gH2AX), and initiates the cascade of DDR signaling pathway. (2) To allow for DNA repair, with the co-signaling of MRN complex, ATM also activates CHK2
and p53 to stall cell cycle progression. (3) When the DNA damage is too devastating, the cells are prone to undergo apoptosis. However, the cells with misrepaired
DNA can continue cycling, thereby accumulating mutations to cause genomic instability. Activated ATM also causes dephosphorylation of Net1, which is activated
and translocated to the cytoplasm. Net1 switches the inactive GDP-bound form to the active GTP-bound form of RhoA. The downstream region of RhoA mainly
diverges into two pathways: (4) one activates p38 MAPK and further promotes cell survival and proliferation, and (5) the other activates ROCK and induces the
formation of actin stress fibers. In addition, stress fibers are often anchored on the focal adhesion complex constituting integrin, of which the inside-out activation
signal can be transduced by ATM. Together, these cellular responses triggered by CDT are related to the acquisition of cancer hallmarks.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lai et al. Role of CDT in Carcinogenesis
integrin b1, a membrane-bound receptor that transduces the
signal favoring cell survival and proliferation. Accordingly,
abolishing this signaling pathway compromises the ability of
the intoxicated cells to avoid anchorage-independent cell
death (78).

Furthermore, a recent study showed that disruption of the
intestinal structural barrier facilitates dissemination of the gut
bacteria, which can be delivered to the liver through intestinal
capillaries and the portal vein. Bacteria in the liver recruit
immune cells and promote the formation of an inflammatory
environment, likely establishing a premetastatic niche (96). This
phenomenon suggests a role for CDT in the process of
metastasis. Theoretically, upon infection with CDT-harboring
bacteria and the secretion of CDT, a group of cells become
intoxicated by CDT. Most of these cells die, which damages the
integrity of the intestinal barrier, whereas a small proportion
survives; these cells become tumor cells and travel with the
bacteria to the liver. In the inflammatory environment promoted
by the bacteria, tumor cells settle in the premetastatic niche and,
thus, favor distant metastasis formation.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Extensive studies have explored how CDT has been linked to a
variety of diseases, and most of them reported the
proinflammatory nature of this special bacterial genotoxin,
which potentiates the carcinogenic property of CDT. CDT-
induced genotoxic stress not only fuels the inflammatory
response but also disrupts the structural barrier by inducing
epithelial cell death. However, a small portion of the intoxicated
cells outrun cell cycle arrest and continue to proliferate with
incorrectly repaired or unrepaired DNA lesions. As more DNA
lesions accumulate, it enhances the mutation frequency,
interferes with genomic stability, and develops tumor
initiation. The connection between the infection of CDT-
harboring bacteria and cancer development has been reported
in several animal studies, which demonstrated that with the help
of CDT, bacteria-induced inflammatory response can be further
depraved to malignancy formation (summarized in Figure 1).

This review emphasized the importance of recent findings
regarding the genotoxicity of CDT associated with cancer
Frontiers in Immunology | www.frontiersin.org 5
formation. However, the direct link between toxin action and
intracellular delivery and its clinical relevance remains largely
unclear. Various crucial issues must be addressed: (i) Whether
long-term persistent infection of CDT-producing bacteria is
related to an increased risk of cancer progression in the host
should be evaluated in clinical cases. (ii) The concentration of
genotoxin produced by bacteria that can naturally cause
oncogenesis in vivo is unclear. (iii) Although delivery of CdtB
into the nucleus and triggering of DNA damage have been
demonstrated, the molecular mechanism and intracellular
trafficking pathways of the various CDTs produced by different
bacterial species remain to be clarified. It is crucial to explore the
detailed mechanism of CDT function using in vivo models or in
clinical studies. Further investigations are required to provide
pivotal insights into the mechanisms underlying the interplay
between genotoxicity and cancer development. This may aid in
developing novel strategies to combat diseases caused by
pathogens along with their virulence factors.
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