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Abstract 

Campylobacter jejuni cytolethal distending toxin (CDT) is composed of CdtA, CdtB, and 

CdtC. Amongst, CdtB possesses a deoxyribonuclease I (DNase I) activity that causes 

double-strand DNA break (DSB) in the nucleus, leading to cell cycle arrest and cell death. We 

recently demonstrated that CdtB can be employed as a therapeutic agent for the treatment of 

radio-resistant prostate cancer (PCa) cells. The radio-resistance and increasing cancer stem cells 

(CSC) are closely associated with the loss of DOC-2/DAB2 interactive protein (DAB2IP). Our 

previous study reported that CdtB sensitizes radio-resistant PCa to ionizing radiation. This study 

will further use nanoparticles to encapsulate CdtB that specifically targets to radio-resistant PCa 

cells. The results from this study will develop a novel theranostic agent for the refractory PCa 

therapy. 

  

Keywords: nanoparticles; cytolethal distending toxin; prostate cancer; radio-resistance  
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A. Background introduction 

Campylobacter jejuni and cytolethal distending toxin (CDT) 

C. jejuni, a Gram-negative bacterium, is a causative agent of food-borne diseases in humans 

[1]. Infection by C. jejuni occurs through the consumption of contaminated poultry products and is 

typically associated with a local acute inflammatory response that involves intestinal tissue damages 

[2]. Cytolethal distending toxin (CDT), a virulence factor of C. jejuni, is composed of three protein 

subunits: CdtA, CdtB, and CdtC [3]. Among the three subunits, CdtB is a type-I deoxyribonuclease 

(DNase I), which causes DNA double-strand break (DSB), cell-cycle arrest at the G2/M phase, 

leading to cell distention and death [4,5]. Our previous study demonstrated that CDT is associated 

with cholesterol-rich microdomains of cells in a modality similar to the CDTs from Haemophilus 

ducreyi and Aggregatibacter actinomycetemcomitans [6]. We also found that C. jejuni CDT induces 

severe intestinal inflammation in mice fed with a high-cholesterol diet, demonstrating that 

cholesterol and lipid rafts are crucial in facilitating CDT-induced pathological derangement in vivo 

[7,8].  

Refractory cancer therapy by using bacterial toxins 

Therapeutic resistance often involves the presence of a major molecular efflux pump in cell 

membranes, enabling cancer cells to bypass drug toxicity or alter cellular processes between the 

cytoplasm and the nucleus [9]. It may be beneficial to use bacterial toxins as alternatives to treat 

refractory tumors, given that these toxins are easily obtainable from bacteria and the toxins can 

efficiently gain access to target cells through membrane-receptor internalization. Several bacterial 

toxins have been applied in clinical settings for cancer therapy, including the anthrax toxin from 

Bacillus anthracis [10], diphtheria toxin from Corynebacterium diphtheriae [11], and Shiga toxin 

from Shigella dysenteriae and Escherichia coli [12]. These studies provide evidence of the value in 

developing bacterial toxins for potential cancer therapeutic agents.  

CDT renders PCa cells sensitized to radiation 

CDTs from different bacteria are capable of inducing cell-cycle arrest by activating ataxia 

telangiectasia mutated (ATM)-dependent DNA-damage checkpoint responses and DSBs, similar to 

the pathways induced by IR [13]. Given this CDT function as a radiomimetic agent, emerging and 

effective therapeutic modalities have been tested as treatments for different cancers [14-16]. Our 

previous studies also demonstrated that CDT increases the sensitivity of radio-resistant PCa cells to 

IR [17]. We showed that C. jejuni CDT enhanced radio-sensitization is attributed to the attenuation 

of DSB repair, long-term cell-cycle arrest in the G2/M phase. In addition, we further showed that 

CDT prevents the formation of autophagosomes and the inhibition of acidic vesicular organelle, 

which are associated with enhanced radiosensitivity in PCa cells [18]. These studies demonstrate 

that C. jejuni CDT can be developed as a potent therapeutic agent for radio-resistant cancers.  
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B. Preliminary results  

Synthesis of biodegradable nanoparticles encapsulated with CdtB-R11 

We have developed core-shell dual-imaging enabled nanoparticles that have both drug release 

and imaging characteristics [19]. As shown in Fig. 1, the nanoparticle core is comprised of 

biodegradable polyethylene glycol-gelatin (PEG-gelatin)/hyaluronan. CD44, a CSC marker, is 

expressed abundantly on the surface of CSC and served as a receptor for hyaluronan [20,21]. 

Therefore, nanoparticles containing hyaluronan should bind specificity to CSC. To prepare 

PEG-gelatin/hyaluronan nanoparticles that were encapsulated with CdtB-R11 (nanoparticle-CdtB), 

various concentrations of PEG-gelatin/hyaluronan were mixed. As shown in Table 1, mixing 

PEG-gelatin/hyaluronan (7.50/0.00, 7.50/1.25, 7.50/2.50, 7.50/5.00 mg/mL; 2.0 mL) were shown in 

the formation of complexes on the nanometer scale. The mean particle sizes of nanoparticles were 

ranged from 250–600 nm with negative zeta potentials, depending on the relative concentrations of 

PEG-gelatinand hyaluronan used. In our selected particulate system, the final concentration of 

PEG-gelatin/hyaluronan was 3.75/1.25 mg/mL. The particles sizes of 275.1  32.6 nm possessed a 

significant zeta potential of -42.6  5.1 mV. Therefore, this particular composition will be used to 

prepare the the nanoparticle-encapsulated CdtB-R11 in this proposal. 

 

Fig. 1. Schematize the preparation and composition of PEG-gelatin/hyaluronan nanoparticles 

encapsulated genotoxin that are fused with R11 (CdtB, R11-CdtB, or CdtB-R11). 

 

Table 2. Particle sizes and zeta potentials prepared with PEG-gelatin/hyaluronan nanoparticles 

 

Characterization of nanoparticle-encapsulated CdtB-fused R11 variants  

As shown in Table 2, the PEG-gelatin/hyaluronan (7.50/2.505 mg/mL, 2.0 mL) mixed with 

CdtB, R11-CdtB or CdtB-R11 gave a mean size range of 350–390 nm, with different negative zeta 

potentials, depending on the different forms of recombinant CdtB that were used. This technique is 

promising as the nanoparticles can be prepared under deionized water at room temperature to 
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protect proteins from degradation in this system. In addition, the polydispersity index of 

nanoparticles, which were measured by dynamic light scattering, revealed a narrower distribution 

(polydispersity indices: 0.11 ± 0.01–0.28 ± 0.03) when compared with other formulation (Table 2 

and Fig. 2). Therefore, the genotoxin and its derivatives (CdtB, R11-CdtB or CdtB-R11)- 

encapsulated nanoparticles prepared with this PEG-gelatin/hyaluronan will be selected in my 

studies. 

  

Table 2. Particle sizes and zeta potentials of nanoparticle-encapsulated CdtB  

 

 

 

Fig. 2. Particle size distribution of prepared nanoparticles. (A) PEG-gelatin/hyaluronan; (B) 

PEG-gelatin/hyaluronan/CdtB; (C) PEG-gelatin/hyaluronan/R11-CdtB; and (D) PEG-gelatin/ 

hyaluronan/CdtB-R11. 
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C. Experimental designs 

Radiation resistance of PCa cells, after the knockdown of DAB2IP, may be attributed to the 

increase in autophagy and an elevated expression of c-Myc [22]. Targeting c-Myc or autophagy to 

decrease their activity may impair the survival of cancer cells in vitro and in vivo [23-25]. Therefore, 

engineering of CdtB-R11 and encapsulate it on nanoparticles that are coated with hyaluronan, 

which has high affinity toward a CSC marker, CD44 [20], will be a viable approach for killing PCa 

cells that are resistant to radiation. 

Aim 1. Evaluating biological activity of CdtB-fused with R11 

CdtB contains an NLS and DNase I activity in the nucleus, causing DSB and cell death [5]. We 

hypothesize that CdtB-R11 proteins will target PCa cells. After entering the nucleus, CdtB-R11 

causes cell cycle arrest and DNA damage. To this end, LAPC4-KD cells will be treated with 

CdtB-R11 derivatives (R11-CdtB, R11-sCdtB, CdtB-R11, and sCdtB-R11), R11 alone, or CdtB 

alone for 24 h. Cells will be fixed and stained with 20 μg/ml propidium iodide (Sigma-Aldrich) 

containing 1 mg/ml RNase (Sigma-Aldrich) for 1 h. The stained cells will be analyzed with a flow 

cytometer (BD Biosciences). The cytotoxicity of CdtB-fused R11 proteins along with CdtA/CdtB in 

PCa cells will be analyzed by using MTT assay, clonogenic assay, and flow cytometry. If the most 

effective of CdtB-R11 derivatives can be observed in these studies, this unique CdtB-R11 will be 

selected for the following experiments.    

Aim 2. Analyzing the localization of nanoparticles-encapsulated CdtB-R11 

Since CD44, a CSC marker and a receptor for hyaluronan, is highly expressed on the surface 

of CSC, nanoparticles containing hyaluronan should bind specifically to CSC. Herein, we will 

examine the functionality of the PEG-gelatin/hyaluronan nanoparticles that are encapsulated with 

CdtB-R11. The PCa binding, cytoplasmic distribution, and nuclear localization of the nanoparticles 

will be examined. To determine the localization of the nanoparticles that are encapsulated with 

CdtB-R11 in the cell, cells will be fixed with 4% paraformaldehyde in PBS and subjected to DAPI 

(1 μg/mL) counterstaining (Sigma-Aldrich). Samples will then be analyzed under a confocal 

microscope (Carl Zeiss). This study will demonstrate whether the nanoparticle-encapsulated 

CdtB-R11 enhances the specificity and promotes killing of CSC.  

Aim 3. Assessing the delivery efficiency 

LAPC4-KD cells will be incubated with chitosan/hyaluronan nanoparticles that are 

encapsulated with CdtB-R11. After 2, 6, 12, 24, and 48 h of incubation, nuclear proteins will be 

prepared using a nuclear extraction kit (Pierce). Protein concentrations will be determined by 

colorimetric assay using the Bio-Rad assay kit (Bio-Rad). The nuclear lysate (20 μg) will then be 

analyzed by immunoblotting. The nuclear localization of CdtB will be demonstrated by confocal 

microscopy. If the nanoparticles coated with CdtB-R11 can be seen in the nucleus with a high 

fluorescence intensity in a short time, the results will demonstrate that this engineered CdtB is 

delivered to CSC cells efficiently.    
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D. Anticipated results 

The major mission of this study is to reveal the molecular basis of a bacterial genotoxin, CdtB, 

to sensitize radiation-induced DSB in radio-resistant PCa. We will also explore technologies for 

applying this bacterial genotoxin in cancer therapy. Understanding the importance of CDT-actions 

and molecular basis of this particular toxin will provide a useful strategy for eradicating 

radio-resistant PCa. We anticipate obtaining research outcomes as follows: 

1. Because CDT has the function to enhance the radio-sensitivity. Therefore, engineering CdtB 

fused with R11 and encapsulated it on nanoparticles for the purpose of targeting at 

radio-resistant PCa cells can be achieved.   

2. The uptake and delivery efficiency of PEG-gelatin/hyaluronan nanoparticles that are 

encapsulated with CdtB-R11 by PCa cells will be examined and the optimized amounts of 

nanoparticles will be determined. This engineered CdtB is predicted to localize on the 

cytoplasmic membrane and the cytosol initially after incubation and ultimately be detected in 

the nucleus. After reaching the nucleus, cell cycle arrest and apoptosis should occur. 

3. Overcoming the radio-resistance in radio-resistant PCa through CDT and the therapeutic 

efficacy of genotoxin delivery nanoparticles will be validated in this proposal. Our research 

will impact significantly to the therapy of radio-resistant PCa. 
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