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Statins, 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors,

have been found to provide protective effects against several bacterial infectious

diseases. Although the use of statins has been shown to enhance antimicrobial

treated Helicobacter pylori eradication and reduce H. pylori-mediated inflammation, the

mechanisms underlying these effects remain unclear. In this study, in vitro and ex vivo

macrophage models were established to investigate the molecular pathways involved

in statin-mediated inhibition of H. pylori-induced inflammation. Our study showed that

statin treatment resulted in a dose-dependent decrease in intracellular H. pylori burden in

both RAW264.7 macrophage cells and murine peritoneal exudate macrophages (PEMs).

Furthermore, statin yielded enhanced early endosome maturation and subsequent

activation of the autophagy pathway, which promotes lysosomal fusion resulting in

degradation of sequestered bacteria, and in turn attenuates interleukin (IL)-1β production.

These results indicate that statin not only reduces cellular cholesterol but also decreases

the H. pylori burden in macrophages by promoting autophagy, consequently alleviating

H. pylori-induced inflammation.
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INTRODUCTION

Helicobacter pylori is a Gram-negative microaerophilic spirochete that colonizes the human
stomach and is estimated to have infected greater than half of the global population (Marshall,
2002). Persistent H. pylori infection is associated with several upper gastrointestinal disorders such
as gastritis, peptic ulcers, and gastric adenocarcinoma (Wroblewski et al., 2010).

Although H. pylori is generally considered an intracellular pathogen, this organism lives in
the mucosal layer and tightly adheres to the gastric epithelial surface. Notably, virulent strains
of H. pylori, can delay uptake and promote the formation of megasomes within macrophages,
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which comprises a crucial feature of H. pylori-induced
pathogenesis (Allen et al., 2000). Moreover, cholesterol-
α-glucosyltransferase, which is responsible for cholesterol
glucosylation in macrophages, was found to contribute to
the protection of H. pylori from phagocytosis (Wunder et al.,
2006). These lines of evidence suggest that H. pylori can survive
intracellularly within specific compartments of macrophages to
avoid phagocytosis-mediated killing.

The inhibitors of 3-hydroxy-3-methyl-glutaryl-coenzyme A
(HMG-CoA) reductase, commonly known as statins, are widely
prescribed for lowering serum cholesterol (Armitage, 2007).
Notably, statins have also been shown to reduce the risk of
severe bacterial infections, including infections by Chlamydia
pneumoniae (Erkkilä et al., 2005), Clostridium difficile (Motzkus-
Feagans et al., 2012), Staphylococcus aureus (Chow et al., 2010),
and Streptococcus pneumoniae (Boyd et al., 2012). However, the
immunomodulatory properties of statins provide only a partial
explanation for the mechanism by which these compounds
inhibit bacterial infections (Jain and Ridker, 2005).

The human immune system employs various mechanisms to
inhibit bacterial infections. While autophagy is a cell process
that typically functions as a recycling pathway, degrading
nonfunctional and unnecessary components and rearranging
these components to support cellular survival (Mariño et al.,
2014), this process was also found to contribute to immune
defense by degrading invading pathogens (Mizushima et al.,
2008; Zhao et al., 2008). As such, these findings indicate that
stimulation of cellular autophagy may attenuate H. pylori-
induced pathogenesis (Yang and Chien, 2009).

Antimicrobial agents, particularly a triple therapy regimen
consisting of a proton-pump inhibitor, amoxicillin, and
clarithromycin, are the most effective means of eradicating H.
pylori infections (O’Connor et al., 2013). Although the cure rate
varies between countries, the triple therapy regimen remains the
recommended treatment forH. pylori infection (O’Connor et al.,
2013). Notably, the administration of this triple therapy regimen
along with statins has been shown to accelerate the clearance
of H. pylori and reduce H. pylori-related inflammation (Tariq
et al., 2007; Yamato et al., 2007; Nseir et al., 2012). However,
the molecular mechanisms underlying the regulatory effects
of statins on H. pylori-induced pathogenesis require further
investigation. In this study, we first hypothesized that statins may
influence the immune response via upregulation of autophagy
and attenuation of H. pylori-induced inflammation. We utilized
in vitro and ex vivo macrophage models of H. pylori infection
to investigate the mechanism underlying the statin-mediated
mitigation of H. pylori pathogenesis. We also explored how
statin influences the bacterial burden and reduces inflammation
by upregulating cellular autophagy and consequently alleviating
H. pylori-associated pathogenesis.

MATERIALS AND METHODS

Antibodies and Reagents
The light chain 3 (LC3)-specific monoclonal antibody was
purchased from Cell Signaling Technology (Danvers, MA),
while the rabbit antibodies against SQSTM1/p62 and beclin-1

were purchased from GeneTex (Irvine, CA). The rabbit anti-
early endosome antigen-1 (EEA-1), anti-lysosome-associated
membrane protein-1 (LAMP-1), and mouse monoclonal anti-
β-actin antibodies were purchased from Abcam (Cambridge,
UK), Abgent (San Diego, CA), and Santa Cruz Biotechnology
(Dallas, TX), respectively. Simvastatin was purchased from
Sigma-Aldrich (St. Louis, MO).

Bacterial and Cell Culture
H. pylori 26695 (ATCC 700392) was cultured on 10% sheep
blood agar plates in a microaerophilic environment (10% CO2,
5% O2, and 85% N2) at 37

◦C. Cultures were incubated for 24–
36 h to achieve optimum microbial activity (Lai et al., 2005).
Murine RAW264.7 macrophages (ATCC TIB-71) were cultured
in Dulbecco’s Modified Eagle Medium (DMEM) supplemented
with 10% endotoxin-free fetal bovine serum (HyClone, Logan,
UT).

Analysis of Cellular Cholesterol and
Cytotoxicity
RAW264.7 cells were treated with simvastatin (0, 5, or 10µM)
at 37◦C for 24 h. Untreated cells were utilized as a control. The
cellular cholesterol content of each treatment group was then
evaluated using an Amplex Red cholesterol assay kit (Molecular
Probes, Carlsbad, CA). The percentage of cellular cholesterol was
determined as follows: (fluorescence of treated cells obtained
from a standard curve/total fluorescence of untreated cells)
× 100%. Meanwhile, the viability of RAW264.7 cells was
determined via the trypan blue exclusion assay, as described
previously (Lai et al., 2008).

Preparation of Murine Peritoneal Exudate
Macrophages (PEMs)
PEMs isolated from C57BL/6 mice were used to investigate the
effects of simvastatin onH. pylori-induced autophagy. Mice were
maintained at the Animal Center of Chang Gung University
(Taoyuan, Taiwan). All procedures were performed according
to the “Guide for the Care and Use of Laboratory Animals”
(NRC, USA) and were approved by the Animal Experimental
Committee of Chang Gung University. PEMs were prepared after
euthanasia by lavaging mice with an intraperitoneal injection
of 3% thioglycolate, as described previously (Lu et al., 2012a).
Harvested cells were then seeded into 24-well tissue culture plates
and incubated at 37◦C for 2 h, after which non-adherent cells
were removed. Adherent cells were then treated with simvastatin
and/or H. pylori and subjected to bacterial intracellular survival
assay and western blot analyses.

Phagocytosis Assay
RAW264.7 cells were treated with PBS or simvastatin (0, 5,
or 10µM) for 8 h and incubated with latex beads (IgG-FITC
complex) at a ratio of 1:100, according to the manufacturer’s
instructions (Cayman, Ann Arbor, MI). After incubation for
1 h, the treated cells were washed with PBS, fixed in 3.7%
paraformaldehyde, and then subjected to flow cytometry analysis.
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Bacterial Adhesion Assay
The numbers of cell-associated bacteria were measured as
described previously (Lai et al., 2008). Briefly, RAW264.7 cells
were treated with PBS or 10µM simvastatin for 8 h and then
infected with H. pylori at a multiplicity of infection (MOI) of
100 for 6 h. Infected cells were washed three times to remove
unbound bacteria and then lysed with distilled water for 10 min.
Lysates were diluted in PBS, then plated onto Brucella blood agar
plates and cultured for 3–5 days. Viable bacteria were counted
and expressed as colony-forming units (CFU).

Bacterial Intracellular Survival Assay
RAW264.7 cells and murine PEMs and cells were not treated
or treated with 10µM simvastatin for 8 h and then infected
with H. pylori (MOI = 100) for 16 h. Cells were treated with
gentamycin (100µg/ml) to eradicate the extracellular bacteria
(Lai et al., 2006). The H. pylori-infected cells were washed with
PBS three times and then incubated in sterile water at 37◦C for
10min to osmotically disrupt the cell membrane. The resulting
lysates were then diluted in PBS and applied to Brucella blood
agar plates. Viable H. pylori colonies were enumerated after 3–5
days of incubation and were presented as CFU.

Western Blot Analysis
To analyze protein expression levels, RAW264.7 cells or PEMs
were treated with simvastatin (0, 5, or 10µM) at 37◦C for
8 h prior to infection with H. pylori for 16 h. Cell lysates were
prepared and boiled with sample dye at 100◦C for 5min.
Samples were separated by 10–12% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred
to polyvinylidene fluoride membranes (Millipore, Billerica, MA).
Membranes were blocked by incubation in TBS-T (Tris-buffered
saline containing 0.1% Tween 20) containing 5% skim milk
at room temperature for 1.5 h, and then probed with primary
antibodies specific to autophagy-related proteins or β-actin
(0.2µg/ml), respectively, at 4◦C overnight. Probed membranes
were washed with TBS-T and incubated with horseradish
peroxidase-conjugated secondary antibodies (0.1µg/ml) (Santa
Cruz Biotechnology) at room temperature for 1 h, and proteins
of interests were visualized using ECLTM western blotting
Detection Reagents (GE Healthcare, Little Chalfont, UK), and
an ImageQuant LAS-4000 system (GE Healthcare). Protein
expression levels were quantified using UN-SCAN-IT gel 6.1
software (Silk Scientific Corporation, Orem, UT).

Immunofluorescence Microscopy
To visualize the co-localization of autophagosome fused
with lysosome, cells were subjected to immunofluorescence
microscopy analysis (Parihar et al., 2014). RAW264.7 cells (2
× 106) were seeded on cover glass in 6-well plates, treated
with 10µM simvastatin, and co-incubated with H. pylori (MOI
= 100) for 16 h. To observe the early to late stages of
autophagosome formation, the cells were probed using a Cyto-
IDTM autophagy detection kit (Enzo Life Sciences, Villeurbanne,
France; Chan et al., 2012). Meanwhile, the formation of lysosome
was observed using a Cell NavigatorTM Lysosome Staining Kit
(AAT Bioquest, Sunnyvale, CA). Fluorescence signals from H.

pylori-infected macrophages were visualized by confocal laser-
scanning microscopy (Zeiss LSM 780; Carl Zeiss, Oberkochen,
Germany).

Enzyme-Linked Immunosorbent Assay
(ELISA)
After treating with 10µM simvastatin and infecting with
H. pylori, RAW264.7 cell supernatants were collected and
interleukin (IL)-1β secretion was analyzed using a mouse IL-
1β ELISA kit, according to the manufacturer’s instructions
(Invitrogen, Waltham, MA).

Statistical Analysis
Experimental results are expressed as means ± standard errors
of the mean (SEM). Differences in results between groups were
evaluated using Student’s t-tests. For analyses of variance, one-
way analysis of variance (ANOVA) was utilized. P < 0.01
were considered statistically significant. Statistical analyses were
performed using SPSS version 11.0 software (SPSS Statistics, Inc.,
Chicago, IL).

RESULTS

Statin Reduces the Intracellular Burden of
H. pylori in Macrophages
Statins are known as inhibitors of HMG-CoA reductase, which is
the rate-limiting enzyme of the mevalonate pathway (Armitage,
2007). In this study, we first evaluated whether simvastatin is
capable of reducing the cellular cholesterol of macrophages.
As shown in Figure 1A, there was a dose-dependent reduction
in the level of cellular cholesterol in RAW264.7 macrophage
cells treated with simvastatin (Figure 1A). We then assessed
whether simvastatin treatment affected macrophage or bacterial
viability. Notably, both macrophages and H. pylori remained
viable, even after treatment with 10µM simvastatin (Figure 1B).
These results indicate that simvastatin reduces the levels of
cellular cholesterol in macrophages without affecting cell viability
or bacterial survival.

To further validate whether statin-treated macrophages
function similarly to untreated macrophages, RAW264.7
cells were untreated or treated with statin (10µM) and
subjecting to the latex bead phagocytosis assay. As shown in
Figure S1, macrophages treated with statin exhibited similar
levels of phagocytosis to the untreated cells. Likewise, statin
treatment had no significant effect on extracellular bacterial
adhesion (Figure S2). Together, these results demonstrate that
macrophages retain their normal functions in the presence of
statins.

To investigate whether simvastatin inhibits H. pylori
survival in macrophages, RAW264.7 cells were pretreated with
simvastatin for 8 h and infected with H. pylori (MOI = 100) for
an additional 16 h. As shown in Figure 1C, treatment with 5
and 10µM simvastatin resulted in significant dose-dependent
reductions in H. pylori burden in RAW264.7 cells. To further
explore the inhibitory effects of simvastatin on intracellular
bacterial survival, we performed an ex vivo analysis using murine
PEMs isolated from C57BL/6 mice. As observed in RAW264.7
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FIGURE 1 | Statin treatment reduces cellular cholesterol and decreases the intracellular bacterial burden in macrophages. (A) RAW264.7 cells were

treated with various concentrations of simvastatin (0, 5, or 10µM) for 24 h and subjected to cellular cholesterol assay analysis. (B) RAW264.7 and Helicobacter pylori

cultures were treated with 0, 5, or 10µM simvastatin for 24 h. Macrophage cell viability was then assessed by trypan blue exclusion assay analysis and bacterial

viability was determined by counting the number of colony-forming units (CFU) for each treatment group on blood agar plates. (C) RAW264.7 cells and (D) murine

peritoneal exudate macrophages (PEMs) were pretreated with simvastatin (0, 5, or 10µM) for 8 h and infected with H. pylori at a MOI of 100 for 16 h. The numbers of

viable intracellular bacteria were then determined via gentamicin protection assays and were expressed as the number of viable CFU. Statistical significance was

evaluated using Student’s t-test. *P < 0.01.

cells, PEMs that were pretreated with 5 or 10µM simvastatin for
8 h exhibited significant reductions in H. pylori burden after 16 h
of infection compared to the control population (Figure 1D).
These results demonstrate that simvastatin decreases the
intracellular H. pylori burden in both in RAW264.7 and primary
murine PEMs in a dose-dependent manner.

Statin Promotes H. Pylori-Induced
Autophagy in Macrophages
Because treatment of cells with cholesterol-lowering agents
has been shown to induce autophagy (Cheng et al., 2006; de
Chastellier and Thilo, 2006), we investigated whether statin
influences the immune response by upregulating autophagy and
attenuating H. pylori-induced inflammation. To address this
question, we established amacrophage infectionmodel to explore
the mechanisms involved in the inhibition of H. pylori-induced
inflammation by statin. Following the induction of autophagy,

the microtubule-associated protein LC3 is converted from LC3-
I to LC3-II. As such, the expression of LC3-II is considered
a marker of autophagy (Klionsky et al., 2012). We therefore
evaluated the expression levels of this protein, as well as those
of EEA-1, an early marker localized on phagosomal membranes,
and LAMP-1, a marker localized on lysosomal membranes (Fratti
et al., 2001; Huynh et al., 2007; Parihar et al., 2014), in RAW264.7
cells infected with H. pylori for 0–48 h by western blot analysis.
As shown in Figure 2A, there was a gradual increase in the
levels of H. pylori-induced EEA-1 and LAMP-1 expression, and
a concurrent increase in the conversion of LC3-I to LC3-II, over
the course of the infection. Peak levels of conversion from LC3-I
to LC3-II were observed between 16 and 36 h. Next, we evaluated
the expression of the autophagy-related proteins beclin-1 and
SQSTM1/p62, which are known to participate in the initiation
of autophagy with LC3-II (Kang et al., 2011; Levine et al., 2011).
RAW264.7 cells treated with simvastatin (0, 5, or 10µM) and
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infected with H. pylori for 16 h exhibited slightly increased
expression of beclin-1 and p62 (Figure 2B). To confirm these
findings, we subsequently analyzed the effects of simvastatin on
PEMs isolated from C57BL/6 mice. As shown in Figure 2C, we
observed increased levels in the conversion of LC3-I to LC3-II,
as well as increased expression of beclin-1 and p62, in H. pylori-
infected PEMs treated with simvastatin, compared to untreated
cells. These results suggest that simvastatin treatment not only
reduces cellular cholesterol but also promotes H. pylori-induced
autophagy in macrophages.

Statin Facilitates Autophagosome
Formation in H. pylori-Infected
Macrophages
To further evaluate the effects of simvastatin on macrophages,
RAW264.7 cells were stained with Cyto-ID autophagy green
dye for visualization of autophagosomes and examined by
confocal microscopy. The control group (untreated and
uninfected) exhibited faint Cyto-ID green fluorescence (puncta-
formation; Figure 3A), while cells treated with simvastatin or
H. pylori alone showed only moderate staining. In contrast,
cells that were treated with simvastatin and subsequently
infected with H. pylori exhibited significantly increased
autophagosome formation compared to both the control
group and to the cells treated with simvastatin or H. pylori
alone (Figure 3B). These results demonstrate that simvastatin
enhances H. pylori-induced autophagosome formation in
macrophages.

Statin Promotes Autophagosome and
Lysosome Fusion in H. pylori-Infected
Macrophages
Mature autophagosomes fuse with lysosomes to form
autolysosomes, which contain lysosomal enzymes capable
of degrading sequestered bacteria (Deen et al., 2013). We
thus investigated whether statin treatment promotes bacterial
degradation in macrophages by inducing autophagosome
maturation and fusion with lysosomes. As shown in Figure 4A,
RAW264.7 cells treated with either simvastatin or H. pylori
alone exhibited little co-localization of Cyto-ID and lysosomal
fluorescence within the cytoplasm. Conversely, cells treated with
simvastatin and then infected with H. pylori exhibited marked
co-localization of Cyto-ID and lysosomes (Figure 4B). We also
tested whether statin treatment promoted H. pylori-induced
lysosome formation. As shown in Figure 5A, treatment with
both simvastatin andH. pylori resulted in increases in EEA-1 and
LAMP-1 expression, compared with cells exposed to simvastatin
or H. pylori alone. We then sought to analyze whether statin
reduces the bacterial burden, and whether this had any effect
on IL-1β production. The induction of IL-1β was dramatically
increased in cells infected with H. pylori alone (Figure 5B). In
contrast, when cells were treated with 10 µM simvastatin and
then infected with H. pylori, there was a significant decrease in
the IL-1β secretion compared with the cells exposed to H. pylori.
Collectively, our results reveal that statin treatment facilitated
H. pylori-induced autophagy, and subsequently promoted

FIGURE 2 | Statin increases Helicobacter pylori-induced autophagy in

macrophages. (A) RAW264.7 cells were infected with H. pylori at a MOI of

100 for the indicated times (0, 2, 6 16, 36, and 48 h). The expression levels of

proteins were then evaluated by western blot analysis. (B) RAW264.7 cells and

(C) peritoneal exudate macrophages (PEMs) were pretreated with simvastatin

(0, 5, or 10µM) for 8 h and then infected with H. pylori at a MOI of 100 for an

additional 16 h. Cell lysates were then prepared and subjected to western blot

analysis for detection of autophagy-associated proteins. β-actin expression

levels were used as the protein loading control. Representative western blot

results from one of two independent experiments are shown. The expression

level of each protein was quantified by analysis of signal intensity, and

normalized with that of β-actin. The expression level of each respective protein,

relative to that of the control group, is indicated at the bottom of each lane.

autophagosome maturation and fusion with lysosomes, thereby
reducing the bacterial burden in macrophages and ameliorating
the inflammatory response.

DISCUSSION

Cholesterol-enriched microdomains, which provide platforms
for microbial infection, are thought to be associated with
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FIGURE 3 | Statin enhances autophagosome formation in Helicobacter pylori-infected macrophages. (A) Untreated RAW264.7 cells and cells treated with

10µM simvastatin were infected with or without H. pylori at a MOI of 100. After incubation for 16 h, the cells were fixed and stained with Cyto-ID and Hoechst 33342

for detection of autophagosomes (green) and visualization of nuclei (blue), respectively. Stained cells were analyzed by confocal microscopy. Scale bar, 5µm. (B) Box

plots summarizing the number of Cyto-ID puncta in each cell (50 cells were evaluated per sample). Statistical significance was evaluated using Student’s t-test. *P <

0.01.

various infectious bacterial and viral diseases (Lin et al.,
2015). In particular, cholesterol plays a crucial role in H.
pylori cell invasion and virulence (Lai et al., 2013). Depletion
of cellular cholesterol not only attenuates H. pylori-induced
pathogenesis (Hutton et al., 2010; Lai et al., 2011) but also
promotes autophagy (Cheng et al., 2006), which has been
shown to contribute to immune defense against invading
pathogens (Levine et al., 2011; Deretic et al., 2013; Lai
et al., 2015). Statins, inhibitors of HMG-CoA reductase that
are widely prescribed for lowering serum cholesterol, have
also been employed to reduce the risk of certain bacterial
infections (Chow et al., 2010; Nseir et al., 2010; Boyd et al.,
2012; Motzkus-Feagans et al., 2012). The in vitro and ex
vivo approaches utilized in this study provided evidence
that statin treatment results in reduced bacterial burden
in macrophages, and consequently attenuation of H. pylori
pathogenesis, via activation of autophagy. These findings
suggest that such cholesterol modulation could comprise a
novel therapeutic approach for controlling H. pylori-associated
diseases.

Previous studies have shown that H. pylori actively delays
its uptake by macrophages, inhibits phagosome maturation

via a VacA and urease-dependent mechanism, and resides in
large vacuoles called megasomes (Allen et al., 2000; Schwartz
and Allen, 2006). Another unusual feature of H. pylori is a
requirement for cholesterol, which is acquired from host cell
membranes and incorporated into the bacterium as cholesteryl
glucosides (Wunder et al., 2006). In addition, it has been reported
that H. pylori encodes several virulence factors that exploit
cholesterol to gain a foothold in the host niche (Murata-Kamiya
et al., 2010; Lai et al., 2013).Meanwhile, surfacemolecules located
within the cholesterol-rich microdomains of host cells sense and
respond to H. pylori in an orchestrated manner (Lu et al., 2012b;
Lin et al., 2016). As such, both host- and pathogen-derived factors
play critical roles in disease progression. In previous studies,
we demonstrated that reduced cellular cholesterol resulted in
reduced VacA activity, as well as attenuated CagA-induced
inflammation and decreased bacterial survival, in H. pylori-
infected gastric epithelial cells (Lai et al., 2008, 2011; Wang
et al., 2012). Specifically, reductions in cholesterol disrupt
the integrity of lipid rafts, resulting in decreased type IV
secretion system-mediated translocation of CagA into host
cells (Hutton et al., 2010), thereby reducing downstream
signaling and attenuating the inflammatory response (Lai
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FIGURE 4 | Statin facilitates the fusion of autophagosomes and lysosomes in Helicobacter pylori-infected macrophages. (A) Untreated RAW264.7 cells

and cells treated with 10µM simvastatin were infected with or without H. pylori at a MOI of 100 for 16 h. Cells were then fixed, stained with Cyto-ID (green), Lysosome

Staining (red), and Hoechst 33342 (blue) for visualization of autophagosomes, lysosomes, and nuclei, respectively, and analyzed by confocal microscopy. Scale bar,

5µm. (B) Box plots summarizing the numbers of co-localized Cyto-ID puncta and lysosomes in each cell (50 cells were evaluated per sample). Statistical significance

was evaluated using Student’s t-test. *P < 0.01.

FIGURE 5 | Statin induces lysosome formation and mitigates proinflammatory cytokine production in Helicobacter pylori-infected macrophages.

RAW264.7 cells were treated with 10µM simvastatin for 8 h and then infected with H. pylori at a MOI of 100 for an additional 16 h. (A) The expression levels of EEA-1

and LAMP-1 were analyzed by western blot. Representative western blot results from one of two independent experiments are shown. The expression level of each

protein was quantified by analysis of signal intensity, and normalized to that of β-actin. The expression level of each respective protein, relative to that of the control

group, is indicated at the bottom of each lane. (B) The levels of IL-1β present in each culture supernatant were determined by enzyme-linked immunosorbent assay

(ELISA). Statistical significance was evaluated using Student’s t-test. *P < 0.01.

et al., 2011). In the current study, we demonstrate that
statin treatment yielded enhanced autophagy and reduced
bacterial burdens in macrophages, followed by decreased levels
of H. pylori-induced IL-1β production, suggesting that statin

may attenuate H. pylori-induced pathogenesis via multiple
mechanisms.

Autophagy is a process involving the degradation and
recycling of intracellular components to provide cellular energy
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and maintain nutritional support for cell survival (Singh and
Cuervo, 2011). Previous studies reported that H. pylori infection
induces autophagosome formation, and that autophagic vesicles
provide special niches for H. pylorimultiplication in both gastric
epithelial cells (Terebiznik et al., 2009) and macrophages (Wang
et al., 2009). AlthoughH. pyloriwas protected in autophagosomes
during the early stages of infection, the bacteria were degraded
within the resulting autolysosomes of both cell types after 24 h
of infection (Chu et al., 2010; Wang et al., 2010). Consistent with
these findings, peripheral blood monocytes (PBMCs) harboring
a single nucleotide polymorphism within the coding sequence
for Autophagy Related 16-Like 1 (ATG16L1; ATG16L1300A),
which is essential for autophagosome formation, exhibited
impaired autophagy and increased susceptibility to H. pylori
infection (Raju et al., 2012). In contrast, PBMCs harboring the
ATG16L1300T allele showed a superior autophagic response and
exhibited increased H. pylori clearance compared with PBMCs
carrying the 300A allele. These data imply that induction of
autophagy might comprise a general mechanism for restricting
bacterial replication in phagocytes (Deen et al., 2013).

In addition to lowering cellular cholesterol, statins were
found to play a protective role in several bacterial infectious
diseases. For example, while previous studies have established
that Listeria monocytogenes triggers autophagy, resulting in
reduced bacterial growth (Birmingham et al., 2007; Py et al.,
2007), in a listeriolysin O (LLO)-dependent manner (Meyer-
Morse et al., 2010), statin treatment was found to enhance
the host defense against L. monocytogenes by targeting LLO-
mediated phagosomal escape (Parihar et al., 2013). Furthermore,
it was recently reported that statin therapy protects against
Mycobacterium tuberculosis infection by enhancing autophagy
and promoting phagosome maturation (Parihar et al., 2014).
Consistent with these previous findings, our results demonstrate
that statin treatment promoted autophagosome maturation and
fusion with lysosomes, resulting in reduced bacterial burdens
within macrophages, and thereby mitigated pathogenic infection
by H. pylori (Figure 6).

There are several limitations to this study. First, only
RAW264.7 macrophages and PEMs were utilized in
our experiments; we have yet to test our findings in

FIGURE 6 | Model for the mechanism by which statin enhances autophagy and alleviates pathogenic infection by Helicobacter pylori. (A) Infected

macrophages harbor H. pylori, which inhibit phagosome maturation, within large vacuoles called megasomes. (B) Initiation of the autophagy pathway includes the

translocation of the ULK complex from the cytosol to the endoplasmic reticulum (ER) and recruitment of the PI3K complex, which triggers the initiation of phagophore

nucleation (Greenfield and Jones, 2013). This initiation process forms the isolation membranes, which in turn sequester cellular components and fuse to generate

autophagosomes. Treatment of cells with simvastatin promotes the fusion of autophagosomes with lysosomes, leading to reduction in bacterial burdens and

attenuation of H. pylori-induced inflammation.
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animal or human subjects. Likewise, the statin dosing
regimens used in our cell-based study have yet to be
evaluated in vivo. Therefore, further clinical investigations
are required to clarify the link between statin use and
regulation of autophagy. Such studies might pave the
way for developing new strategies to control H. pylori
infection.

In conclusion, the results of this investigation reveal that statin
could potentially be used to decrease the intracellular burden
of H. pylori in macrophages. In addition, statin enhanced early
endosome maturation and subsequent activation of autophagy
in macrophages, which promoted lysosomal fusion resulting
in the degradation of sequestered H. pylori, followed by
reductions in proinflammatory cytokine production. Future in
vivo investigations and treatment regimens are needed to study
the mechanism underlying the statin-mediated mitigation of H.
pylori infection.

AUTHOR CONTRIBUTIONS

Conception or design of this work: WL, MH, and C-HL.
Experimental study: WL, MH, MW, C-JL, TL, H-RL, and H-JL.
Data analysis and interpretation: YS, MK, and YP. Writing the
manuscript: WL, MH, and C-HL. Final approval: all authors

FUNDING

This work was supported by the Ministry of Science and
Technology (104-2320-B-182-040 and 105-2313-B-182-001),

Chang Gung Memorial Hospital (CMRPD1F0011-3,
CMRPD1F0431-3, and BMRPE90), and the Tomorrow Medical
Foundation.

ACKNOWLEDGMENTS

The authors would like to thank the editor and reviewers
for the editorial assistance and their valuable comments.
The authors sincerely appreciate the assistance of Shu-
Chen Shen for analyzing confocal microscopy at the
Division of Instrument Service of Academia Sinica, Taipei,
Taiwan.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fcimb.
2016.00203/full#supplementary-material

Figure S1 | Statin does not affect the phagocytotic activity of

macrophages. RAW264.7 cells treated with simvastatin (0 or 10µM) for 8 h were

incubated with latex beads, and phagocytosis activity was evaluated via flow

cytometry analysis. The number at the right of each histogram represents the

mean fluorescence intensity (MFI).

Figure S2 | Statin has no effect on extracellular bacterial adhesion to

macrophages. RAW264.7 cells untreated or treated with 10µM simvastatin for 8

h were infected with Helicobacter pylori (MOI = 100) for 6 h, washed three times

to remove unbound bacteria, and lysed by incubation in distilled water for 10 min.

Cell lysates were then plated onto Brucella blood agar plates and cultured for 3–5

days. The results are expressed as the mean (± standard deviation) number of

viable colony-forming units (CFU) obtained from three independent experiments.

REFERENCES

Allen, L. A., Schlesinger, L. S., and Kang, B. (2000). Virulent strains ofHelicobacter

pylori demonstrate delayed phagocytosis and stimulate homotypic phagosome

fusion in macrophages. J. Exp. Med. 191, 115–128. doi: 10.1084/jem.191.

1.115

Armitage, J. (2007). The safety of statins in clinical practice. Lancet 370, 1781–1790.

doi: 10.1016/S0140-6736(07)60716-8

Birmingham, C. L., Canadien, V., Gouin, E., Troy, E. B., Yoshimori, T.,

Cossart, P., et al. (2007). Listeria monocytogenes evades killing by autophagy

during colonization of host cells. Autophagy 3, 442–451. doi: 10.4161/auto.

4450

Boyd, A. R., Hinojosa, C. A., Rodriguez, P. J., and Orihuela, C. J. (2012).

Impact of oral simvastatin therapy on acute lung injury in mice during

pneumococcal pneumonia. BMC Microbiol. 12:73. doi: 10.1186/1471-2180-

12-73

Chan, L. L., Shen, D., Wilkinson, A. R., Patton, W., Lai, N., Chan, E., et al. (2012).

A novel image-based cytometry method for autophagy detection in living cells.

Autophagy 8, 1371–1382. doi: 10.4161/auto.21028

Cheng, J., Ohsaki, Y., Tauchi-Sato, K., Fujita, A., and Fujimoto, T. (2006).

Cholesterol depletion induces autophagy. Biochem. Biophys. Res. Commun. 351,

246–252. doi: 10.1016/j.bbrc.2006.10.042

Chow, O. A., von Köckritz-Blickwede, M., Bright, A. T., Hensler, M.

E., Zinkernagel, A. S., Cogen, A. L., et al. (2010). Statins enhance

formation of phagocyte extracellular traps. Cell Host Microbe 8, 445–454.

doi: 10.1016/j.chom.2010.10.005

Chu, Y. T., Wang, Y. H., Wu, J. J., and Lei, H. Y. (2010). Invasion and

multiplication of Helicobacter pylori in gastric epithelial cells and

implications for antibiotic resistance. Infect. Immun. 78, 4157–4165.

doi: 10.1128/IAI.00524-10

de Chastellier, C., and Thilo, L. (2006). Cholesterol depletion in Mycobacterium

avium-infected macrophages overcomes the block in phagosome maturation

and leads to the reversible sequestration of viable mycobacteria in

phagolysosome-derived autophagic vacuoles. Cell Microbiol. 8, 242–256.

doi: 10.1111/j.1462-5822.2005.00617.x

Deen, N. S., Huang, S. J., Gong, L., Kwok, T., and Devenish, R. J. (2013).

The impact of autophagic processes on the intracellular fate of Helicobacter

pylori: more tricks from an enigmatic pathogen? Autophagy 9, 639–652.

doi: 10.4161/auto.23782

Deretic, V., Saitoh, T., and Akira, S. (2013). Autophagy in infection,

inflammation and immunity. Nat. Rev. Immunol. 13, 722–737. doi: 10.1038/nr

i3532

Erkkilä, L., Jauhiainen, M., Laitinen, K., Haasio, K., Tiirola, T., Saikku, P., et al.

(2005). Effect of simvastatin, an established lipid-lowering drug, on pulmonary

Chlamydia pneumoniae infection in mice. Antimicrob. Agents Chemother. 49,

3959–3962. doi: 10.1128/AAC.49.9.3959-3962.2005

Fratti, R. A., Backer, J. M., Gruenberg, J., Corvera, S., and Deretic, V. (2001). Role

of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis

and mycobacterial phagosome maturation arrest. J. Cell Biol. 154, 631–644.

doi: 10.1083/jcb.200106049

Greenfield, L. K., and Jones, N. L. (2013). Modulation of autophagy byHelicobacter

pylori and its role in gastric carcinogenesis. Trends Microbiol. 21, 602–612.

doi: 10.1016/j.tim.2013.09.004

Hutton, M. L., Kaparakis-Liaskos, M., Turner, L., Cardona, A., Kwok,

T., and Ferrero, R. L. (2010). Helicobacter pylori exploits cholesterol-

rich microdomains for induction of NF-kappaB-dependent responses and

peptidoglycan delivery in epithelial cells. Infect. Immun. 78, 4523–4531.

doi: 10.1128/IAI.00439-10

Huynh, K. K., Eskelinen, E. L., Scott, C. C., Malevanets, A., Saftig, P.,

and Grinstein, S. (2007). LAMP proteins are required for fusion of

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9 January 2017 | Volume 6 | Article 203

http://journal.frontiersin.org/article/10.3389/fcimb.2016.00203/full#supplementary-material
https://doi.org/10.1084/jem.191.1.115
https://doi.org/10.1016/S0140-6736(07)60716-8
https://doi.org/10.4161/auto.4450
https://doi.org/10.1186/1471-2180-12-73
https://doi.org/10.4161/auto.21028
https://doi.org/10.1016/j.bbrc.2006.10.042
https://doi.org/10.1016/j.chom.2010.10.005
https://doi.org/10.1128/IAI.00524-10
https://doi.org/10.1111/j.1462-5822.2005.00617.x
https://doi.org/10.4161/auto.23782
https://doi.org/10.1038/nri3532
https://doi.org/10.1128/AAC.49.9.3959-3962.2005
https://doi.org/10.1083/jcb.200106049
https://doi.org/10.1016/j.tim.2013.09.004
https://doi.org/10.1128/IAI.00439-10
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Liao et al. Statin Reduces H. pylori Burden in Macrophages

lysosomes with phagosomes. EMBO J. 26, 313–324. doi: 10.1038/sj.emboj.760

1511

Jain, M. K., and Ridker, P. M. (2005). Anti-inflammatory effects of statins:

clinical evidence and basic mechanisms. Nat. Rev. Drug Discov. 4, 977–987.

doi: 10.1038/nrd1901

Kang, R., Zeh, H. J., Lotze, M. T., and Tang, D. (2011). The Beclin 1

network regulates autophagy and apoptosis. Cell Death Differ. 18, 571–580.

doi: 10.1038/cdd.2010.191

Klionsky, D. J., Abdalla, F. C., Abeliovich, H., Abraham, R. T., Acevedo-Arozena,

A., Adeli, K., et al. (2012). Guidelines for the use and interpretation of

assays for monitoring autophagy. Autophagy 8, 445–544. doi: 10.4161/auto.

19496

Lai, C. H., Chang, Y. C., Du, S. Y., Wang, H. J., Kuo, C. H., Fang, S. H., et al.

(2008). Cholesterol depletion reduces Helicobacter pylori CagA translocation

and CagA-induced responses in AGS cells. Infect. Immun. 76, 3293–3303.

doi: 10.1128/IAI.00365-08

Lai, C. H., Hsu, Y. M., Wang, H. J., and Wang, W. C. (2013). Manipulation of

host cholesterol by Helicobacter pylori for their beneficial ecological niche.

BioMedicine 3, 27–33. doi: 10.1016/j.biomed.2012.12.002

Lai, C. H., Kuo, C. H., Chen, P. Y., Poon, S. K., Chang, C. S., and Wang, W. C.

(2006). Association of antibiotic resistance and higher internalization activity

in resistant Helicobacter pylori isolates. J. Antimicrob Chemother. 57, 466–471.

doi: 10.1093/jac/dki479

Lai, C. H., Poon, S. K., Chen, Y. C., Chang, C. S., and Wang, W. C. (2005). Lower

prevalence of Helicobacter pylori infection with vacAs1a, cagA-positive, and

babA2-positive genotype in erosive reflux esophagitis disease. Helicobacter 10,

577–585. doi: 10.1111/j.1523-5378.2005.00363.x

Lai, C. H., Wang, H. J., Chang, Y. C., Hsieh, W. C., Lin, H. J., Tang, C. H.,

et al. (2011). Helicobacter pylori CagA-mediated IL-8 induction in gastric

epithelial cells is cholesterol-dependent and requires the C-terminal tyrosine

phosphorylation-containing domain. FEMS Microbiol. Lett. 323, 155–163.

doi: 10.1111/j.1574-6968.2011.02372.x

Lai, C. K., Su, J. C., Lin, Y. H., Chang, C. S., Feng, C. L., Lin, H. J.,

et al. (2015). Involvement of cholesterol in Campylobacter jejuni cytolethal

distending toxin-induced pathogenesis. Future Microbiol. 10, 489–501.

doi: 10.2217/fmb.14.119

Levine, B., Mizushima, N., and Virgin, H. W. (2011). Autophagy in immunity and

inflammation. Nature 469, 323–335. doi: 10.1038/nature09782

Lin, C. J., Lai, C. K., Kao, M. C., Wu, L. T., Lo, U. G., Lin, L. C., et al.

(2015). Impact of cholesterol on disease progression. Biomedicine (Taipei). 5,

7. doi: 10.7603/s40681-015-0007-8

Lin, H. J., Hsu, F. Y., Chen, W. W., Lee, C. H., Lin, Y. J., Chen, Y. Y., et al. (2016).

Helicobacter pyloriActivates HMGB1 Expression and Recruits RAGE into lipid

rafts to promote inflammation in Gastric Epithelial Cells. Front Immunol.

7:341. doi: 10.3389/fimmu.2016.00341

Lu, D. Y., Chen, H. C., Yang, M. S., Hsu, Y. M., Lin, H. J., Tang, C. H., et al.

(2012b). Ceramide and Toll-like receptor 4 are mobilized into membrane rafts

in response to Helicobacter pylori infection in gastric epithelial cells. Infect.

Immun. 80, 1823–1833. doi: 10.1128/IAI.05856-11

Lu, D. Y., Tang, C. H., Chang, C. H., Maa, M. C., Fang, S. H., Hsu, Y.

M., et al. (2012a). Helicobacter pylori attenuates lipopolysaccharide-induced

nitric oxide production by murine macrophages. Innate Immun. 18, 406–417.

doi: 10.1177/1753425911413164

Mariño, G., Niso-Santano, M., Baehrecke, E. H., and Kroemer, G. (2014). Self-

consumption: the interplay of autophagy and apoptosis.Nat. Rev.Mol. Cell Biol.

15, 81–94. doi: 10.1038/nrm3735

Marshall, B. (2002). Helicobacter pylori: 20 years on. Clin. Med. 2, 147–152.

doi: 10.7861/clinmedicine.2-2-147

Meyer-Morse, N., Robbins, J. R., Rae, C. S., Mochegova, S. N., Swanson, M.

S., Zhao, Z., et al. (2010). Listeriolysin O is necessary and sufficient to

induce autophagy during Listeria monocytogenes infection. PLoS ONE 5:e8610.

doi: 10.1371/journal.pone.0008610

Mizushima, N., Levine, B., Cuervo, A. M., and Klionsky, D. J. (2008). Autophagy

fights disease through cellular self-digestion. Nature 451, 1069–1075.

doi: 10.1038/nature06639

Motzkus-Feagans, C. A., Pakyz, A., Polk, R., Gambassi, G., and Lapane, K.

L. (2012). Statin use and the risk of Clostridium difficile in academic

medical centres. Gut 61, 1538–1542. doi: 10.1136/gutjnl-2011-3

01378

Murata-Kamiya, N., Kikuchi, K., Hayashi, T., Higashi, H., and Hatakeyama,

M. (2010). Helicobacter pylori exploits host membrane phosphatidylserine

for delivery, localization, and pathophysiological action of the CagA

oncoprotein. Cell Host Microbe 7, 399–411. doi: 10.1016/j.chom.2010.0

4.005

Nseir, W., Diab, H., Mahamid, M., Abu-Elheja, O., Samara, M., Abid,

A., et al. (2012). Randomised clinical trial: simvastatin as adjuvant

therapy improves significantly the Helicobacter pylori eradication rate–

a placebo-controlled study. Aliment Pharmacol. Ther. 36, 231–238.

doi: 10.1111/j.1365-2036.2012.05161.x

Nseir, W., Khateeb, J., Tatour, I., Haiek, S., Samara, M., and Assy, N. (2010). Long-

term statin therapy affects the severity of chronic gastritis. Helicobacter 15,

510–515. doi: 10.1111/j.1523-5378.2010.00803.x

O’Connor, A., Molina-Infante, J., Gisbert, J. P., and O’Morain, C. (2013).

Treatment of Helicobacter pylori infection 2013. Helicobacter 18(Suppl. 1),

58–65. doi: 10.1111/hel.12075

Parihar, S. P., Guler, R., Khutlang, R., Lang, D. M., Hurdayal, R., Mhlanga,

M. M., et al. (2014). Statin therapy reduces the Mycobacterium tuberculosis

burden in human macrophages and in mice by enhancing autophagy and

phagosome maturation. J. Infect. Dis. 209, 754–763. doi: 10.1093/infdis/j

it550

Parihar, S. P., Guler, R., Lang, D. M., Suzuki, H., Marais, A. D., and Brombacher,

F. (2013). Simvastatin enhances protection against Listeria monocytogenes

infection in mice by counteracting Listeria-induced phagosomal escape. PLoS

ONE 8:e75490. doi: 10.1371/journal.pone.0075490

Py, B. F., Lipinski, M. M., and Yuan, J. (2007). Autophagy limits Listeria

monocytogenes intracellular growth in the early phase of primary infection.

Autophagy 3, 117–125. doi: 10.4161/auto.3618

Raju, D., Hussey, S., Ang, M., Terebiznik, M. R., Sibony, M., Galindo-Mata,

E., et al. (2012). Vacuolating cytotoxin and variants in Atg16L1 that disrupt

autophagy promote Helicobacter pylori infection in humans. Gastroenterology

142, 1160–1171. doi: 10.1053/j.gastro.2012.01.043

Schwartz, J. T., and Allen, L. A. (2006). Role of urease in megasome formation

andHelicobacter pylori survival in macrophages. J. Leukoc. Biol. 79, 1214–1225.

doi: 10.1189/jlb.0106030

Singh, R., and Cuervo, A. M. (2011). Autophagy in the cellular energetic balance.

Cell Metab. 13, 495–504. doi: 10.1016/j.cmet.2011.04.004

Tariq, M., Khan, H. A., Elfaki, I., Arshaduddin, M., Al Moutaery, M., Al Rayes,

H., et al. (2007). Gastric antisecretory and antiulcer effects of simvastatin in

rats. J. Gastroenterol. Hepatol. 22, 2316–2323. doi: 10.1111/j.1440-1746.2007.05

021.x

Terebiznik, M. R., Raju, D., Vázquez, C. L., Torbricki, K., Kulkarni, R., Blanke,

S. R., et al. (2009). Effect of Helicobacter pylori’s vacuolating cytotoxin on

the autophagy pathway in gastric epithelial cells. Autophagy 5, 370–379.

doi: 10.4161/auto.5.3.7663

Wang, H. J., Cheng, W. C., Cheng, H. H., Lai, C. H., and Wang, W.

C. (2012). Helicobacter pylori cholesteryl glucosides interfere with host

membrane phase and affect type IV secretion system function during infection

in AGS cells. Mol. Microbiol. 83, 67–84. doi: 10.1111/j.1365-2958.2011.0

7910.x

Wang, Y. H., Gorvel, J. P., Chu, Y. T., Wu, J. J., and Lei, H. Y. (2010). Helicobacter

pylori impairs murine dendritic cell responses to infection. PLoS ONE 5:e10844.

doi: 10.1371/journal.pone.0010844

Wang, Y. H., Wu, J. J., and Lei, H. Y. (2009). The autophagic induction in

Helicobacter pylori-infected macrophage. Exp. Biol. Med. (Maywood). 234,

171–180. doi: 10.3181/0808-RM-252

Wroblewski, L. E., Peek, R. M. Jr., and Wilson, K. T. (2010). Helicobacter pylori

and gastric cancer: factors that modulate disease risk. Clin. Microbiol. Rev. 23,

713–739. doi: 10.1128/CMR.00011-10

Wunder, C., Churin, Y., Winau, F., Warnecke, D., Vieth, M., Lindner,

B., et al. (2006). Cholesterol glucosylation promotes immune evasion

by Helicobacter pylori. Nat. Med. 12, 1030–1038. doi: 10.1038/n

m1480

Yamato, M., Watanabe, T., Higuchi, K., Taira, K., Tanigawa, T., Shiba, M., et al.

(2007). Anti-inflammatory effects of pravastatin onHelicobacter pylori-induced

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10 January 2017 | Volume 6 | Article 203

https://doi.org/10.1038/sj.emboj.7601511
https://doi.org/10.1038/nrd1901
https://doi.org/10.1038/cdd.2010.191
https://doi.org/10.4161/auto.19496
https://doi.org/10.1128/IAI.00365-08
https://doi.org/10.1016/j.biomed.2012.12.002
https://doi.org/10.1093/jac/dki479
https://doi.org/10.1111/j.1523-5378.2005.00363.x
https://doi.org/10.1111/j.1574-6968.2011.02372.x
https://doi.org/10.2217/fmb.14.119
https://doi.org/10.1038/nature09782
https://doi.org/10.7603/s40681-015-0007-8
https://doi.org/10.3389/fimmu.2016.00341
https://doi.org/10.1128/IAI.05856-11
https://doi.org/10.1177/1753425911413164
https://doi.org/10.1038/nrm3735
https://doi.org/10.7861/clinmedicine.2-2-147
https://doi.org/10.1371/journal.pone.0008610
https://doi.org/10.1038/nature06639
https://doi.org/10.1136/gutjnl-2011-301378
https://doi.org/10.1016/j.chom.2010.04.005
https://doi.org/10.1111/j.1365-2036.2012.05161.x
https://doi.org/10.1111/j.1523-5378.2010.00803.x
https://doi.org/10.1111/hel.12075
https://doi.org/10.1093/infdis/jit550
https://doi.org/10.1371/journal.pone.0075490
https://doi.org/10.4161/auto.3618
https://doi.org/10.1053/j.gastro.2012.01.043
https://doi.org/10.1189/jlb.0106030
https://doi.org/10.1016/j.cmet.2011.04.004
https://doi.org/10.1111/j.1440-1746.2007.05021.x
https://doi.org/10.4161/auto.5.3.7663
https://doi.org/10.1111/j.1365-2958.2011.07910.x
https://doi.org/10.1371/journal.pone.0010844
https://doi.org/10.3181/0808-RM-252
https://doi.org/10.1128/CMR.00011-10
https://doi.org/10.1038/nm1480
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Liao et al. Statin Reduces H. pylori Burden in Macrophages

gastritis in mice. Dig. Dis. Sci. 52, 2833–2839. doi: 10.1007/s10620-006-9

638-7

Yang, J. C., and Chien, C. T. (2009). A new approach for the prevention

and treatment of Helicobacter pylori infection via upregulation of autophagy

and downregulation of apoptosis. Autophagy 5, 413–414. doi: 10.4161/auto.5.

3.7826

Zhao, Z., Fux, B., Goodwin, M., Dunay, I. R., Strong, D., Miller, B.

C., et al. (2008). Autophagosome-independent essential function for

the autophagy protein Atg5 in cellular immunity to intracellular

pathogens. Cell Host Microbe. 4, 458–469. doi: 10.1016/j.chom.2008.1

0.003

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Liao, Huang, Wang, Lin, Lu, Lo, Pan, Sun, Kao, Lim and Lai.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11 January 2017 | Volume 6 | Article 203

https://doi.org/10.1007/s10620-006-9638-7
https://doi.org/10.4161/auto.5.3.7826
https://doi.org/10.1016/j.chom.2008.10.003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive

	Statin Decreases Helicobacter pylori Burden in Macrophages by Promoting Autophagy
	Introduction
	Materials and Methods
	Antibodies and Reagents
	Bacterial and Cell Culture
	Analysis of Cellular Cholesterol and Cytotoxicity
	Preparation of Murine Peritoneal Exudate Macrophages (PEMs)
	Phagocytosis Assay
	Bacterial Adhesion Assay
	Bacterial Intracellular Survival Assay
	Western Blot Analysis
	Immunofluorescence Microscopy
	Enzyme-Linked Immunosorbent Assay (ELISA)
	Statistical Analysis

	Results
	Statin Reduces the Intracellular Burden of H. pylori in Macrophages
	Statin Promotes H. Pylori-Induced Autophagy in Macrophages
	Statin Facilitates Autophagosome Formation in H. pylori-Infected Macrophages
	Statin Promotes Autophagosome and Lysosome Fusion in H. pylori-Infected Macrophages

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


