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PM2.5 impairs macrophage functions to

exacerbate pneumococcus-induced
pulmonary pathogenesis
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Abstract

Background: Pneumococcus is one of the most common human airway pathogens that causes life-threatening
infections. Ambient fine particulate matter (PM) with aerodynamic diameter ≤ 2.5 μm (PM2.5) is known to
significantly contribute to respiratory diseases. PM2.5-induced airway inflammation may decrease innate immune
defenses against bacterial infection. However, there is currently limited information available regarding the effect of
PM2.5 exposure on molecular interactions between pneumococcus and macrophages.

Results: PM2.5 exposure hampered macrophage functions, including phagocytosis and proinflammatory cytokine
production, in response to pneumococcal infection. In a PM2.5-exposed pneumococcus-infected mouse model,
PM2.5 subverted the pulmonary immune response and caused leukocyte infiltration. Further, PM2.5 exposure
suppressed the levels of CXCL10 and its receptor, CXCR3, by inhibiting the PI3K/Akt and MAPK pathways.

Conclusions: The effect of PM2.5 exposure on macrophage activity enhances pneumococcal infectivity and
aggravates pulmonary pathogenesis.
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Background
Particulate matter (PM) is a complex mixture of solid
and liquid particles released into the environment during
coal, petroleum, and fossil fuel combustion [1]. PM with
aerodynamic diameter ≤ 2.5 μm (PM2.5) is known to sig-
nificantly contribute to airway inflammation [2–4]. Epi-
demiological studies have demonstrated that
anthropogenic PM2.5 exposure was associated with the
exacerbation of respiratory diseases, all-cause mortality,
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and cardiopulmonary mortality [5–7]. Low PM2.5 expos-
ure levels also pose certain public health risks [8].
Pneumococcus, a Gram-positive coccus, is the most

common cause of global pneumonia mortality [9]. Al-
veolar macrophages are mainly responsible for the pul-
monary defense against pneumococcal infection [10].
Activated macrophages release inflammatory mediators,
including IL-1α/β, IL-6, TNF-α, IFN-α/β, CXCL10,
MCP-1, and nitric oxide (NO), recruiting nearby im-
mune cells against pneumococcal infection [11]. Alveolar
macrophage depletion increased mortality and lung bac-
terial burden [12], indicating that macrophages play a
crucial role in protective anti-inflammation in pneumo-
coccal pneumonia.
Mounting evidence shows that exposure to ambient

pollution particles impairs pulmonary functions and
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favors infectious diseases [13–15]. For instance, concen-
trated ambient particles enhance pneumococcus binding
to macrophages, but decrease its internalization [16].
Coal fly ash (CFA) impairs the antimicrobial peptide
(AMP) function that increases Pseudomonas aeruginosa
growth [17]. Recently, CFA was demonstrated to adsorb
to and complex with AMP, decreasing its antimicrobial
activity [18]. These lines of evidence indicate that ambi-
ent particles influence the airway immune defense, in-
creasing bacterial infection susceptibility.
Ambient particles have been found in airway macro-

phages in the septum of healthy individuals [19], and their
impact on human immune responses have been reported
[15, 18, 20]. However, the pathophysiological relevance of
PM2.5 exposure in the respiratory tract, particularly with re-
spect to macrophages against bacterial infection, remains
unclear. In this study, we aimed to investigate the effects of
long-term PM2.5 exposure on macrophage activation
against pneumococcal infection. We established a PM2.5-
loaded murine model that was pneumococcus-infected to
investigate macrophage functions and pulmonary patho-
genesis. Further, molecular studies were performed to de-
termine the effect of PM2.5 on signaling pathways and
whether it acts as an immune suppressor in response to
bacterial challenge, leading to the exacerbation of
pneumococcus-induced lung pathogenesis.
Methods
Antibodies and reagents
Antibodies against PI3K, p-Akt, t-Akt, p-p38, t-p38, p-JNK,
t-JNK, p-Erk, t-Erk, and p-p65 were purchased from Cell
Signaling Technology (Beverly, MA). Antibody specific to
β-actin was obtained from Santa Cruz Biotechnology (Santa
Cruz, CA). Antibodies against inducible nitric oxide syn-
thase (iNOS) and high mobility group box 1 (HMGB1)
were purchased from Abcam (Cambridge, UK). Antibodies
specific to t-p65 and CXCR3 were purchased from Gene-
Tex (Irvine, CA) and Novus Biologicals (Centennial, CO),
respectively. Inhibitors specific to Erk (PD98059), p38
(SB203580), JNK (SP600125), and NF-κB (JSH-23) were
purchased from Sigma-Aldrich (St Louis, MO).
Cell and bacterial culture
Macrophage cell line RAW264.7 (ATCC TIB-71) cells
were cultured in Dulbecco’s Modified Eagle Medium
(DMEM) (Invitrogen, Carlsbad, CA) containing 10%
complement-inactivated fetal bovine serum (HyClone, Lo-
gan, UT) and incubated at 37 °C in a humid atmosphere
containing 5% CO2 [21]. Streptococcus pneumoniae strain
TIGR4 (virulent serotype 4, ATCC BAA-334) was cul-
tured on blood agar plates (Becton Dickinson, Sparks,
MD) and incubated at 37 °C under 5% CO2 [22]. The bac-
teria were refreshed for 3 h in Todd Hewitt Broth (Becton
Dickinson) to reach the logarithmic phase and were then
used in the following infection experiments.

Characterization of particulate matter
Particulate matter less than 2.5 μm diameter (PM2.5)
(RM8785) was purchased from National Institute of
Standards and Technology (MD, USA) [23]. The par-
ticulate matter on filter media was fixed and coated with
gold by an ion sputter (E-1010, Hitachi, Japan). The par-
ticle size was verified by field-emission scanning electron
microscope (FE-SEM) (JSM 7500F, JEOL, Japan).

Cell viability assay
RAW264.7 cells (1 × 105) were seeded in 96-well plates
and treated with low (5 μg/ml) or high (20 μg/ml) doses
of PM2.5 for 24 h. Cells were incubated with 0.5 mg/ml
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) solution for 2 h. Formazan crystals were
dissolved in isopropanol, and the absorbance at 570 nm
was determined by a spectrophotometer (Bio-Rad,
Hercules, CA) [24]. The cell viability was expressed as a
percentage compared to PM2.5-untreated group.

Phagocytosis assay
The Phagocytosis Assay Kit (IgG FITC) (Cayman Chem-
ical, Ann Arbor, MI) was employed to analyze whether
PM2.5 affects the phagocytic activity of macrophages
[25]. RAW264.7 cells (2 × 106) were treated with low
(5 μg/ml) or high (20 μg/ml) doses of PM2.5 for 24 h.
Latex beads coated with fluorescent-labeled rabbit IgG
were incubated with cells at 37 °C for 3 h. The cells were
fixed with 4% paraformaldehyde followed by staining
with Hoechst 33342 (AAT Bioquest, Sunnyvale, CA).
The signals of fluorescein isothiocyanate (FITC) and
Hoechst 33342 were analyzed under a Laser Scanning
Confocal Microscope (LSM780, Carl Zeiss, Germany).

Bacterial internalization assay
A gentamicin protection assay was used to analyze the
bacterial internalization by macrophages [26]. Briefly,
RAW264.7 cells were treated with low (5 μg/ml) or high
(20 μg/ml) doses of PM2.5 for 24 h prior to infection with
pneumococcus (MOI = 10) for 6 h. The infected cells
were treated with gentamicin (100 μg/ml) for 1.5 h to kill
extracellular bacteria. The cells were lysed with sterilized
water and cell lysates were seeded on blood agar plates
by serial dilution. Visible colony-forming units (CFU)
were calculated to determine the bacterial internalization
activity.

Western blot assay
RAW264.7 cells (2 × 106) were untreated or treated with
PM2.5 (20 μg/ml) for 24 h followed by infection with
pneumococcus (MOI = 10) for an additional 6 h. Cells
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were washed and lysed with 100 μl RIPA containing pro-
tease and phosphatase inhibitors (Roche, Indianapolis,
IN), and then subjected to western blot assay. The sam-
ples were resolved by 12% SDS-PAGE and transferred
onto polyvinylidene difluoride membranes (Millipore,
Billerica, MA). The membranes were blocked by 5%
skim milk and incubated with the primary antibodies
followed by incubation with horseradish peroxidase
(HRP)-conjugated secondary antibodies (Millipore). The
proteins of interests were detected using ECL Western
Blotting Detection Reagent (BIOMAN, Taipei, Taiwan)
and analyzed by Azure C400 (Azure Biosystems, Dublin,
CA) and AzureSpot Analysis Software (Azure Biosys-
tems) [27]. To determine the intensities of western blot
bands, Un-Scan-It v6.1 software (Orem, UT, USA) was
used. Identical areas surrounding each band were
cropped, and protein expression levels were converted
into pixel densities. Each area value was normalized to
the β-actin density in the same lane on the gel, and then
divided by the normalized density in the mock-control.
Fold change represents protein expression level relative
to the mock-control.

Analysis of nitric oxide production
RAW264.7 cells (1 × 105) were untreated or treated with
20 μg/ml PM2.5. After incubation for 24 h, the cells were in-
fected with pneumococcus (MOI = 10) for 6 h. The culture
medium was collected and the nitric oxide production was
assessed by using Griess reagent (Sigma-Aldrich) [28].

Quantitative real-time reverse transcription-PCR (qRT-PCR)
To explore the mRNA levels of iNOS, CD80, CD86,
CD163, CD206, and F4/80 in macrophages, we per-
formed qRT-PCR analysis in this study. The oligo-
nucleotide primers for qRT-PCR quantification are
shown in Table S1. The mRNA levels were analyzed by
qRT-PCR using SYBR Green I Master Mix and a model
7900 Sequence Detector System. The program was pre-
incubated at 50 °C for 2 min and 95 °C for 10 min; PCR
was performed with 35 cycles of 95 °C for 10 s and 60 °C
for 1 min. The data for each gene quantity was deter-
mined by relative calculation using the 2−ΔΔCt method.
The method was used to calculate fold changes in each
treatment group.

Determination of cytokine production
RAW264.7 cells were untreated or treated with 20 μg/ml
PM2.5 for 24 h, the cells were uninfected or infected with
pneumococcus (MOI = 10) for 6 h. The supernatant was
collected from cell culture, and the expression levels of
sHMGB1, IL-1α, IL-1β, TNF-α, CXCL9, CXCL10, and
CXCL11 were analyzed using sandwich enzyme-linked
immunosorbent assay (ELISA, R&D Systems, Minneap-
olis, MN) [29].
Animal study
Male BALB/c mice (aged 6 weeks) were obtained from
the National Laboratory Animal Center (Taipei, Taiwan).
The mouse experiments were performed in accordance
with the Animal Care and Use Guidelines for Chang
Gung University under a protocol approved by the Insti-
tutional Animal Care Use Committee (IACUC Approval
No.: CGU16–019). Mice were divided into four groups
for the treatments with PBS (mock), PM2.5, pneumococ-
cus, and PM2.5 + pneumococcus (10 mice per group; 6
mice for harvesting bronchoalveolar lavage fluid (BALF)
and 4 mice for histopathological examination). PM2.5

was administered by intratracheal (i.t.) instillation twice
per week for 3 weeks (total amount of PM2.5 = 200 μg).
Amongst, two mice in PM2.5 + pneumococcus group
died during PM2.5 exposure period and were excluded in
the following studies. Mice were placed in the chambers,
allowed to rest for 4 days, and then infected with
pneumococcus by intranasal (i.n.) injection (1 × 108

CFU/10 μl). After infection for 48 h, the mice were eu-
thanized, and the BALF and lungs were isolated as de-
scribed previously [21]. Bacterial survival in BALF was
analyzed. In each group, 6 mice were used to prepare
BALF for cell enumeration and differentiation, while the
lung tissues of 4 mice were investigated using H&E and
IHC staining. qRT-PCR assay was employed to assess
the copy number of pneumococcus genomic DNA in
BALF. The oligonucleotide primers used to analyze
pneumococcus TIGR 4 were as follows: forward, 5′-
GGG GAA GTA TTT TCA GAG TCG-3′; and reverse,
5′-AAT CAC CAA CTA ACC ATC CAA TAG-3′ [30].
The inflammatory cells in BALF were distinguished
using Wright–Giemsa stain.

Cytokine array
BALF prepared from each mouse in the same group
were pooled into one sample and analyzed by Proteome
Profiler Array (R&D Systems). Images were captured
using an Azure C400 (Azure Biosystems, CA). The
quantifications of each dot were measured by Image J,
and the fold changes were calculated by Log2. The ex-
pression levels of cytokines were expressed as the aver-
age signal intensity of duplicate spots subtracted from
signal background and normalized to total protein
concentration.

Histopathological analysis
Lung tissues isolated from mice were prepared for
hematoxylin-eosin (H&E) or immunohistochemistry
(IHC) staining as described previously [31]. The lung
sections were stained with antibodies against CXCR3,
IL-1β, and F4/80, respectively, followed by incubation
with HRP-conjugated secondary antibodies and devel-
oped with an ABC kit (Vector Laboratories, Burlingame,
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CA). The stained tissues were observed and evaluated by
using a microscope (AXIO IMAGER M2, Carl Zeiss,
Germany).

Statistical analysis
Statistical analysis was performed using the SPSS pro-
gram (version 18.0 for windows, SPSS Inc., Chicago, IL),
and all data are shown as mean ± standard deviation
(SD). Statistical significance was determined by Student’s
t-test for two groups and one-way ANOVA with Tukey
post-hoc test for more than two groups. P-value of less
than 0.05 was considered statistically significant.

Results
PM2.5 impairs phagocytosis of pneumococcus by
macrophages
We first characterized particulate matter size using FE-
SEM. The size distribution was dominated by particles
smaller than 2.5 μm (referred to as PM2.5) (Fig. 1a).
RAW264.7 cells were then treated with 20 μg/ml PM2.5
Fig. 1 PM2.5 does not affect macrophage viability and pneumococcus surv
magnified images of cropped areas are shown in the right panels. Original
bars, 1 μm. b Cell viability of RAW264.7 cells exposed to low (5 μg/ml) or h
Pneumococcus incubated with low or high PM2.5 doses for 6 h. Bacteria gr
forming units (CFU). Results are presented as mean ± standard deviation fro
for 24 h, and light microscopy showed that the particu-
late matter was deposited and likely embedded in the
cells (Additional file 1: Fig. S1). We further investigated
the influence of PM2.5 exposure on macrophage viability
by treating RAW264.7 cells with low (5 μg/ml) or high
(20 μg/ml) PM2.5 doses for 24 h. Cell viability was min-
imally affected by both doses (Fig. 1b). Additionally,
PM2.5 exposure only marginally influenced pneumococ-
cal survival (Fig. 1c). Therefore, 5 and 20 μg/ml of PM2.5

were employed for subsequent experiments.
To examine whether PM2.5 exposure affects macro-

phage phagocytic activity, we analyzed phagocytosis
using antibody-coated latex beads and fluorescence. Low
PM2.5 dose (5 μg/ml) slightly reduced macrophage in-
ternalization of the latex beads (Fig. 2a). In contrast,
high PM2.5 dose (20 μg/ml) treatment dramatically re-
duced latex bead internalization, indicating that PM2.5

hinders macrophage phagocytic activity. We further de-
termined bacterial internalization by macrophages using
the gentamicin protection assay. As shown in Fig. 2b,
ival. a Transmission electron micrograph of the particulate matter. The
magnification: 3000× (upper panel) and 8000× (lower panel). Scale
igh (20 μg/ml) doses of PM2.5 for 24 h, analyzed with MTT assay. c
own on the blood agar plates were counted and expressed as colony-
m triplicate independent experiments



Fig. 2 PM2.5 suppresses macrophage phagocytosis in response to pneumococcal infection. a RAW264.7 cells were exposed to low (5 μg/ml) or
high (20 μg/ml) doses of PM2.5 for 24 h, and then incubated with latex fluorescent beads for 3 h. The nuclei were stained with Hoechst 33342 and
the image was analyzed by confocal microscopy. Scale bar, 10 μm. b RAW264.7 cells were exposed to low or high doses of PM2.5 for 24 h before
pneumococcal infection for 6 h (MOI = 10). Intracellular pneumococcal survival was determined using gentamicin protection assays and expressed
as viable CFU. Results are represented mean ± standard deviation from triplicate independent experiments and P-value was determined by using
one-way ANOVA followed by a post-hoc test (*, P < 0.05)
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the total bacterial survival was significantly increased in
RAW264.7 cells treated with both low and high doses of
PM2.5. These results indicate that PM2.5 exposure im-
pairs macrophage phagocytic activity and may reduce
pneumococcal clearance.
PM2.5 inhibits macrophage pneumococcus-induced
inflammatory mediators
Nitric oxide (NO) generated by inducible nitric oxide
synthase (iNOS) in macrophages is known to kill micro-
organisms [32]. Therefore, the effects of PM2.5 on NO
production and pneumococcal clearance by macro-
phages were investigated. Our results showed that iNOS
expression was higher in both PM2.5-exposed and
pneumococcus-infected cells than in untreated mock
cells (Fig. 3a). In contrast, pneumococcus-induced iNOS
expression was markedly reduced by PM2.5-treatment. In
parallel, nitrite levels were increased in PM2.5-exposed
or pneumococcus-infected cells, but significantly re-
duced in PM2.5-treated macrophages that were chal-
lenged with pneumococcus (Fig. 3b). These results
indicate that PM2.5 inhibits pneumococcus-induced
iNOS protein expression and reduces nitric oxide pro-
duction, thereby attenuating macrophage bactericidal
activity.
To further investigate the effect of PM2.5 on the in-
flammatory response, we measured the production of
several proinflammatory cytokines. HMGB1 exerts pro-
inflammatory activities when released from macrophages
[33]. Pneumococcus-induced HMGB1 expression in cells
was significantly decreased by PM2.5 exposure (Fig. 3c).
The same trend was also observed for other
macrophage-produced proinflammatory cytokines, in-
cluding sHMGB1, IL-1α, IL-1β, and TNF-α, which were
inhibited by the co-treatment of PM2.5 and pneumococ-
cus (Fig. 3d-g). These results demonstrate that PM2.5 im-
pedes pneumococcus-induced proinflammatory cytokine
production and may attenuate the immune response to
bacterial infection.

Long-term PM2.5 exposure subverts pneumococcal
clearance in lungs and exacerbates pulmonary
pathogenesis
To ascertain whether long-term PM2.5 exposure impairs
the immune response and enhances the bacterial burden in
host respiratory systems, we established sets of PM2.5-ex-
posed murine models (Fig. 4a). Mice were divided into four
groups: untreated mock, PM2.5-exposed, pneumococcus-
infected, and PM2.5 + pneumococcus co-treated groups.
Mice were exposed to PBS or PM2.5, twice weekly, for 3
weeks (for a total of 200 μg), followed by pneumococcal



Fig. 3 PM2.5 dampens pneumococcus-induced inflammatory mediators in macrophages. RAW264.7 cells were unexposed or exposed to 20 μg/ml
of PM2.5 for 24 h, followed by pneumococcus challenge for 6 h. a iNOS expression levels were determined using western blotting, and (b) the
culture supernatant nitrite concentrations were determined using Griess reagent and normalized to cell viability. c HMGB1 expression levels were
analyzed using western blotting. Relative protein expression levels were normalized to those in the mock-treated group and are indicated under
each band. d Secreted HMGB1 (sHMGB1), (e) IL-1α, (f) IL-1β, and (g) TNF-α production in culture supernatant were determined using ELISA. The
values were means ± standard deviations from triplicate independent experiments. Statistical significance was evaluated using Student’s t-test or
one-way ANOVA followed by a post-hoc test (*, P < 0.05)
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infection for 48 h. The body weights and temperatures of the
mice were measured every 3 days, and were not observed to
be different among the four groups (Additional file 1: Fig. S2).
The mice were then euthanized, BALF was collected, and bac-
terial loads were determined. Pneumococcal loads and bacter-
ial genomic DNA copy numbers were increased in the
PM2.5 + pneumococcus co-treated group, compared with
those in the only pneumococcus-infected group (Fig. 4b and
c). The BALF cells were differentiated using Wright-Giemsa
stain. Lymphocyte count was markedly decreased in PM2.5 +
pneumococcus co-treated mice, compared with those in the
other treatment groups (Additional file 1: Table S2). In con-
trast, eosinophil count was increased in both the PM2.5-ex-
posed and PM2.5 + pneumococcus co-treated groups.
Murine lung tissues were then subjected to H&E and

IHC staining. Inflammatory cells were absent around the
lung bronchi of untreated and pneumococcus-infected
mice (Fig. 5). However, there was notable inflammatory
cell infiltration around the bronchi of PM2.5-exposed
mice. After pneumococcal infection, lung inflammation
was noticeable with erythrocyte infiltration in the pulmon-
ary parenchyma. When PM2.5-exposed mice were
pneumococcus-challenged, immune cell infiltration
around the bronchi and erythrocytes in the pulmonary
parenchyma were obvious in the lung tissues. Therefore,
long-term PM2.5 exposure favors bacterial infection of the
lungs, which exacerbates inflammation and aggravates
pulmonary pathogenesis.

PM2.5 dampens pneumococcus-induced chemokine
production
To evaluate the effect of PM2.5 exposure on chemokine
production in mice, chemokines in BALF were analyzed
with cytokine array. The expression levels of CXCL13,
CXCL10, IL-1RA TIMP-1, CXCL11, CXCL12, CCL12,
CCL2, CXCL1, IL-16, CXCL9, TNF-α, and CD54 de-
creased, whereas that of C5/C5a increased in the PM2.5 +
pneumococcus co-treated mice compared with those in
the pneumococcus-infected mice (Fig. 6a). The ligands,
CXCL9, − 10, and − 11, binding to CXCR3 play crucial
roles in immune cell activation [34]. We next explored
macrophage expression of CXCL9, − 10, and − 11. As ex-
pected, CXCL9, − 10, and − 11 secretions were signifi-
cantly decreased with prior PM2.5 exposure, followed by
bacterial challenge, compared with that with pneumo-
coccal infection alone (Fig. 6b-d). In addition, IHC



Fig. 4 Long-term PM2.5 exposure enhances pneumococcal load in the lung. a Mice were intratracheally (i.t.) administered PM2.5 twice weekly for
three weeks (for a total of 200 μg), and were infected with pneumococcus (1 × 108) via intranasal (i.n.) instillation. Mice were euthanized 48 h
post-infection, and their BALF harvested for (b) bacterial load and (c) pneumococcal genomic DNA copy number determination. Horizontal lines
indicate the mean value in each treatment group

Fig. 5 PM2.5 aggravates pneumococcus-induced pulmonary pathogenesis. Mice were administered PM2.5 and pneumococcus-infected as
described in Fig. 4. After euthanizing the mice, lung sections were subjected to hematoxylin/eosin (H&E) staining (n = 4 per treatment group). The
lower panel shows magnified images of the cropped areas. Images were observed under a microscope with 200× magnification. Scale
bars, 100 μm
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Fig. 6 PM2.5 inhibits pneumococcus-induced chemokine production. a Mice were administered PM2.5 and infected with pneumococcus, as
described in Fig. 4. After euthanizing the mice, the collected BALF collected from mice (n = 6) was pooled into one sample and subjected to
cytokine array analysis. Chemokine expression was quantified using ImageJ. Log2 fold changes were calculated for the PM2.5 + pneumococcus co-
treated and only pneumococcus-infected groups. RAW264.7 cells were incubated with or without 20 μg/ml PM2.5 for 24 h, and pneumococcus-
infected or uninfected for 6 h. Culture supernatant was collected, and the concentrations of (b) CXCL9, (c) CXCL10, and (d) CXCL11 were
determined using ELISA. Statistical significance was analyzed using one-way ANOVA followed by a post-hoc test (*, P < 0.05)
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analysis showed decreased expression of IL-1β and
CXCR3 in the lung tissues of PM2.5 + pneumococcus co-
treated mice when compared to that in the untreated
mice (Additional file 1: Fig. S3). These results suggest
that PM2.5 exposure attenuates the pneumococcus-
induced chemokine production.
Because CXCR3-mediated inflammation is regulated by

the PI3K/Akt and MAPK pathways [35], we further ana-
lyzed the levels of particular molecules involved in CXCR3
signaling. Decreases in CXCL9, − 10, and − 11 levels re-
duced CXCR3 and PI3K/Akt expression in PM2.5 +
pneumococcus co-treated macrophages, compared with
that for pneumococcal infection alone (Fig. 7a). Further-
more, the phosphorylation of p38, JNK, and Erk was
markedly decreased in PM2.5 + pneumococcus co-treated
cells as opposed to that in pneumococcus-infected cells
(Fig. 7b). In parallel, TLR4 expression and p65 phosphor-
ylation noticeably declined in macrophages co-treated
with PM2.5 + pneumococcus compared with those in the
pneumococcus-infected group (Fig. 7c).
We then conducted an inhibition assay to analyze the in-

volvement of the MAPK and NF-κB signaling pathways in
the macrophage function-impairing effect of PM2.5. Macro-
phages were pretreated with Erk inhibitor (PD98059),
which was followed by PM2.5 and pneumococcus treat-
ment. As shown in Fig. 8a, PM2.5 exposure decreased the
level of phosphorylated Erk and the expression of iNOS,
HMGB1, and CXCR3 in pneumococcus-infected macro-
phages. In parallel, pneumococcus-induced iNOS,
HMGB1, p-Erk, and CXCR3 were significantly sup-
pressed in cells pretreated with PD98059. Interestingly,
the suppressive effect of PM2.5 on pneumococcus-
induced inflammatory molecules was augmented by
PD98059. This trend was also observed during the ana-
lysis of NO production and HMGB1 secretion (Fig. 8b-c).
Our data further showed that pneumococcus-induced NO
production was inhibited by PM2.5, SB203580 (p38 inhibi-
tor), or SP600125 (JNK inhibitor) (Additional file 1: Fig.
S4). Moreover, our findings suggest that pneumococcus-
induced NO production can effectively be suppressed by
co-treatment with PM2.5 and JSH-23 (NF-κB inhibitor).
These results demonstrate that PM2.5 inhibits
pneumococcus-stimulated macrophage activation through
the MAPK and NF-κB signaling pathways.



Fig. 7 PM2.5 impairs pneumococcus-induced chemokine production via the PI3K/Akt and MAPK pathways. RAW264.7 cells were exposed to PM2.5

(20 μg/ml) for 24 h, followed by pneumococcus infection for 6 h. Cell lysates were prepared and subjected to western blot analysis using
antibodies against (a) CXCR3, PI3K, and Akt, (b) p38, JNK, Erk, and their respective phosphorylated forms, and (c) TLR4, p65, and phosphorylated
p65. β-actin was used as a loading control. Relative expression levels were normalized to those in the mock-treated group and are indicated
under each band
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Discussion
Air pollution has become a serious public health con-
cern worldwide. PM2.5 has a larger surface and can ad-
here to transient metals, toxic substances, and
pathogens, and can be inhaled into the respiratory sys-
tem [36–38]. A growing number of investigations have
indicated that PM2.5 exposure is associated with several
respiratory diseases, including chronic obstructive pul-
monary disease (COPD) and asthma [39, 40]. Noticeably,
PM2.5 can penetrate the respiratory barrier and enter the
circulatory system, therefore spreading throughout the
body, leading to cardiovascular diseases, hypertension,
diabetes mellitus, and systemic inflammation [2, 41–44].
Alveolar macrophages initially engulf lung-deposited PM2.5

[19] that impair the pulmonary immune system, resulting in
increased bacterial infectivity [17, 18]. Given the evidence
that PM2.5 poses adverse health risks, the current study com-
prehensively explored the mechanism underlying the PM2.5-
mediated impairment of the primary immune defense
against bacterial infection.
Phagocytosis is a strategy by which macrophages trig-

ger lysosomes to degrade internalized bacteria [45]. The
activated macrophages then produce proinflammatory
cytokines to recruit other immune cells associated with
adaptive immunity, to collaboratively eradicate the path-
ogens [46]. Concentrated ambient particles have been
shown to inhibit macrophage bacteria internalization
[16]. Oil fly ash exposure damaged the lungs and de-
creased nitric oxide production, attenuating bacterial
clearance by macrophages [47]. Consistent with previous
findings, our current results demonstrated that PM2.5

subverts macrophage phagocytic activity, and decreases
proinflammatory cytokine production in response to
pneumococcal infection. Furthermore, the nitric oxide
level, which exhibits antimicrobial activity, was sup-
pressed by PM2.5-mediated inhibition of iNOS expres-
sion. Collectively, these findings provide information on
how particulate matter subverts macrophage activity to
enhance bacterial infectivity.
High PM2.5 exposure levels (≥ 100 μg/ml) are known to

enhance proinflammatory cytokine production, resulting in
lung toxicity [48–50]. However, in this study, cell viability
was unaffected and proinflammatory cytokine production
was not significantly increased in macrophages treated with
relatively low PM2.5 levels (20 μg/ml). In contrast, pneumo-
coccal infection markedly enhanced proinflammatory cyto-
kine secretion; however, this trend was in turn remarkably
reduced by PM2.5 exposure. The low dose of PM2.5 admin-
istered to macrophages before pneumococcal challenge
may have substantially suppressed proinflammatory cyto-
kine production rather than being cytotoxic. The associ-
ation between PM2.5 exposure at different concentrations
and impaired macrophage function following pneumococ-
cal infection merits further investigation.
It has been reported that PM induces inflammatory re-

sponse through the TLR2 and TLR4 pathways [51, 52].
TLR2 recognizes pneumococcal peptidoglycan and induces
an inflammatory response, thus promoting host defense
against bacterial infection [53]. In addition, macrophages in-
fected with pneumococcus express a scavenger receptor,
macrophage receptor with collagenous structure (MARCO),
which is co-expressed with TLR2 and nucleotide-binding
oligomerization domain-containing 2 (NOD-2), to regulate
inflammatory responses [54]. Further, another macrophage



Fig. 8 Signaling pathways involved in the inhibition of pneumococcus-induced chemokine production by PM2.5. RAW264.7 cells were pretreated
with 20 μM PD98059 (Erk inhibitor) and exposed to PM2.5 (20 μg/ml) for 24 h, followed by pneumococcus infection (MOI = 10) for 6 h. Cell lysates
were prepared and analyzed by western blotting using antibodies against (a) iNOS, HMGB1, p-Erk, t-Erk, and CXCR3. β-actin was used as a loading
control. Relative expression levels were normalized to those in the mock-treated group and are indicated under each band. b nitric oxide
concentrations were determined using Griess reagent, and (c) sHMGB1 production was assessed by ELISA. The data are means ± standard
deviations from triplicate independent experiments. Statistical significance was evaluated using one-way ANOVA, followed by a post-hoc test
(*, P < 0.05)
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scavenger receptor, SR-AI/II has been reported to be impli-
cated in innate defense against bacteria and TiO2 particles
[55]. Collectively, these findings indicate that pattern recogni-
tion receptors (PRPs) may act as receptors for bacteria and
environmental particles. However, very few studies have
assessed the synergistic and antagonistic interactions be-
tween PM and bacteria. Therefore, the extent to which bac-
teria and PM activate different, same, or opposing receptors
is still unclear and warrants future studies.
HMGB1 is one of the danger-associated molecular

pattern (DAMP) proteins, which are endogenous danger
signals [56]. HMGB1 is a ubiquitous nuclear protein fa-
cilitating NF-κB transcription in eukaryotes [57]. Once
HMGB1 is released by necrotic or activated immune
cells, it activates the production of extracellular proin-
flammatory cytokines, including IL-1α, IL-1β, IL-6, IL-8,
TNF-α, and IFN-γ [58–60]. Our results showed that
HMGB1 production was increased by PM2.5-exposure or
bacterial infection but decreased by PM2.5 + pneumococ-
cus co-treatment. A similar trend was also observed for
the expression level of phosphorylated p65. PM2.5-treat-
ment plus bacterial infection inhibited the production of
proinflammatory cytokines including IL-1α, IL-1β, and
TNF-α, thereby enhancing bacterial infectivity. HMGB1
appears to significantly manipulate macrophage proin-
flammatory cytokine production during bacterial infec-
tion. However, the mechanism underlying PM2.5

suppression of HMGB1-mediated immune defense
against pneumococcus remains to be elucidated.
Macrophages can be polarized into two phenotypes:

M1 (proinflammatory phenotype) and M2 (anti-inflam-
matory phenotype) [61]. Previous studies indicated that
PM2.5 exposure significantly induced the inflammatory
M1 polarization, which contributed to lung disorders
[62, 63]. In contrast, recent investigations demonstrated
that PM2.5 activated M2-polarization to exacerbate lung
eosinophilia and allergic responses [64, 65]. However,
discrepancies and controversial results have emerged.
We, therefor, conducted additional studies to assess the
effects of PM2.5 on macrophage phenotypic transition.
The obtained ELISA and qRT-PCR results demonstrated
that pneumococcal infection activated M1 macrophages
(Fig. 3f-g and Additional file 1: Fig. S5A-C), which is in
accordance with the results of previous studies [66, 67].
Noticeably, PM2.5 suppressed pneumococcus-induced M1
macrophage markers. In addition, IHC analysis showed that
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F4/80+ cells were increased in mice infected with pneumo-
coccus when compared with mice in mock-control group
(Additional file 1: Fig. S5F-G). Therefore, these findings indi-
cate that PM2.5 manipulates macrophage polarization that is
possibly responsible for the observed macrophage dysfunc-
tion, and it may impair the elimination of bacterial infection,
thereby exacerbating inflammation.
The CXCR3 ligands, including CXCL9, − 10, and− 11,

generate Th1 response [34]. CXCL10/CXCR3 interaction is
essential for promoting immune cell functions, including dif-
ferentiation, migration, and activation [34]. Activation of the
macrophage CXCL10/CXCR3 axis is regulated by the PI3K/
Akt and MAPK pathways [68]. Additionally, CXCL10 pro-
duction is positively associated with pneumococcal load [69].
Our results expanded the prior findings and showed that
CXCL9, − 10, and− 11 expression in BALF was significantly
increased after pneumococcal infection, but decreased upon
PM2.5 treatment. Furthermore, we identified that
pneumococcus-induced CXCL10/CXCR3, MAPK, and NF-
κB signaling pathway activation was suppressed by PM2.5

(Fig. 9). Impaired CXCL10 expression increases the suscepti-
bility to bacterial infection [70]. These findings support our
results that PM2.5 decreases CXCL10/CXCR3 activation,
thus contributing to pneumococcus-induced pathogenesis.
Fig. 9 Schematic model illustrating the mechanism underlying the PM2.5-m
activation and pulmonary infection exacerbation. PM2.5 exposure suppresse
pneumococcal infection. Further, PM2.5 subverted proinflammatory cytokin
pneumococcus-infected macrophages
Pneumococcus is one of the most crucial human path-
ogens causing community-acquired pneumonia [71].
The serotypes 1, 4, 6B, 7F, 14, and 19F of pneumococcal
isolates are known to have an invasive disease potential
in humans [72]. The pneumococcal strain, serotype 4
(TIGR4) causes the most-severe invasive disease, while
the serotype 1 clones cause low-level bacteremia without
any disease symptoms [73]. In addition, the completely
sequenced genome of the TIGR4 strain has been exten-
sively employed in laboratory animal models to elucidate
the pathological features of pneumococcal pneumonia
and sepsis [74]. Therefore, due to its high virulence and
poor pathogenic outcomes, we chose the TIGR4 strain
for this study.
Although the mechanisms underlying the PM2.5-me-

diated dampening of macrophage activity against
pneumococcal infection were investigated in this study,
the cell-based and animal studies may not completely
reflect the pathophysiology in humans. Moreover, it is
difficult to collect BALF from PM2.5-exposed
pneumococcal-infected patients. Further investigations
should analyze samples from pneumococcus-infected
patients living in PM2.5-polluted urban areas to fill the
gap for the translational utility of the present study.
ediated dampening of pneumococcus-induced macrophage
s macrophage phagocytic activity and nitric oxide production during
es and chemokines by inhibiting the PI3K/Akt and MAPK pathways in
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Conclusions
In the present study, we provided evidence that PM2.5 ex-
posure impairs macrophage functions, including phagocyt-
osis and nitric oxide production, which, in turn, hampers
bacterial clearance activity. Additionally, PM2.5 perturbs the
macrophage polarization and may cause macrophage dys-
function. Animal studies showed that long-term PM2.5-ex-
posure inhibits pneumococcus-induced production of
proinflammatory cytokines, favors pneumococcal infection,
and exacerbates pulmonary pathogenesis. We further dem-
onstrated that PM2.5 exposure dampens pneumococcus-
induced chemokine and CXCR3 production through sup-
pression of the PI3K/Akt and MAPK signaling pathways.
Our findings provide novel translational insight into the
mechanism underlying PM2.5-induced aggravation of
pneumococcal infection of the airways.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12989-020-00362-2.

Additional file 1: Figure S1. Deposition of particulate matter in the
cytoplasm. RAW264.7 cells were (A) untreated (mock) or (B) treated with
20 μg/ml PM2.5 for 24 h and subjected to light microscopic analysis.
Arrows represent macrophages with phagocytosed PM2.5. Scale bars,
5 μm. Figure S2. The body weight and temperature of mice during the
experiment. Mice were divided into four groups (10 per group) for the
treatments with PBS (mock), PM2.5, pneumococcus (Sp), and PM2.5 +
pneumococcus, respectively. The body weights and temperatures of the
mice were measured every three days during the experiment. Figure S3.
Long-term PM2.5-exposure decreases the expression of CXCR3 and IL-1β
in pneumococcus-infected lung tissues. Mice were administered PM2.5

and pneumococcus-infected as described in Fig. 4. Mice were euthanized
and lung tissues were subjected to immunohistochemical (IHC) staining
with specific antibody against CXCR3 and IL-1β (original magnification:
200×). Magnified images of each cropped area are shown in the lower
panel. Scale bars, 100 μm. Figure S4. Involvement of the MAPK and NF-
κB signaling pathways in the suppression of pneumococcus-induced ni-
tric oxide production by PM2.5. RAW264.7 cells were pretreated with
SB203580 (10 μM), SP000125 (10 μM), or JSH-23 (20 μM) for 1 h, and ex-
posed to PM2.5 (20 μg/ml) for 24 h, followed by pneumococcal infection
for 6 h. The nitric oxide concentration was determined using Griess re-
agent. Statistical significance was evaluated using one-way ANOVA
followed by a post-hoc test (*, P < 0.05) to compare with pneumococcus
infection alone group. Figure S5. PM2.5 subverts the macrophage
polarization. RAW264.7 cells were unexposed or exposed to 20 μg/ml of
PM2.5 for 24 h, followed by pneumococcal challenge for 6 h. mRNA levels
of (A) iNOS, (B) CD80, (C) CD86, (D) CD163, (E) CD206, and (F) F4/80 in
macrophages were determined by qRT-PCR analysis. Data are presented
as means ± standard deviations from triplicate independent experiments.
Statistical significance was analyzed using one-way ANOVA, followed by a
post-hoc test (*, P < 0.05). (G) Mouse lung tissues were subjected to im-
munohistochemical (IHC) and stained with anti-F4/80 antibody (original
magnification: 200×). Magnified images of each cropped area are shown
in the lower panel. Arrows in red indicated F4/80-positive cells. Scale bars,
100 μm. Table S1. Primers used for qRT-PCR. Table S2. Differentiated
cell counts in BALF.
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