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Abstract: Particulate matter (PM) with an aerodynamic diameter of ≤2.5 µm (PM2.5) significantly
contributes to various disease-related respiratory inflammations. Armillaria mellea, recognized for
its medicinal properties, could alleviate these respiratory ailments. However, its efficacy against
PM2.5-induced inflammation remains elusive. In this study, we investigated whether A. mellea
mycelia could mitigate PM2.5-induced respiratory inflammation and assessed the underlying mecha-
nisms. Our results showed that A. mellea mycelia significantly reduced PM2.5-induced nitric oxide
(NO) production and nuclear factor (NF)-κB activation in macrophages. Furthermore, A. mellea
mycelia suppressed the expression of inflammatory mediators, indicating their potent antioxidant
and anti-inflammatory properties. In murine models, A. mellea mycelia mitigated PM2.5-induced
lung inflammation and cytokine secretion, restoring lung inflammatory status. Our results highlight
the potential of A. mellea mycelia to treat PM2.5-induced respiratory inflammation. The antioxidant
and anti-inflammatory effects of A. mellea mycelia demonstrated in vitro and in vivo hold promising
potential for developing respiratory health improvement interventions upon PM2.5 exposure.

Keywords: Armillaria mellea mycelia; PM2.5; macrophage; pulmonary inflammation

1. Introduction

Particulate matter (PM) with an aerodynamic diameter of ≤2.5 µm (PM2.5) is widely
recognized for its role in inducing respiratory inflammation [1,2]. Primary PM2.5 sources
include vehicle and industrial emissions, as well as wildfires [3]. Prolonged PM2.5 ex-
posure is reportedly linked to an increased risk of respiratory diseases such as asthma,
chronic obstructive pulmonary disease, and lung cancers [4–6]. Several countries maintain
monitoring networks to assess environmental PM2.5 concentrations. Nevertheless, an
annual escalation in PM2.5 pollution was registered, especially in regions with significant
industrial development [7].

Exposure to PM2.5 could lead to immune cell infiltration and the activation of in-
flammatory pathways, particularly influencing the alveolar macrophage functions [8,9].
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Such inflammatory pathway activation is linked to the oxidative stress response elicited by
PM2.5 exposure in the respiratory tract [10]. Notably, oxidative stress assumes a pivotal
role in the detrimental impacts and mechanisms of PM2.5 on the respiratory system, elicit-
ing diverse injurious pathways that culminate in inflammation and cellular damage [11].
Since low-level exposure to PM2.5 poses certain public health risks [12], mitigating PM2.5-
induced pulmonary inflammation is crucial for human health. Various natural products and
their constituents have been investigated for their potential to alleviate PM2.5-induced pul-
monary injury and enhance lung function. Suppressing oxidative stress provides benefits in
alleviating PM2.5-induced systemic dysfunction [13–15]. For instance, Panax ginseng (black
ginseng), a traditional herb, reportedly exerts beneficial effects against PM2.5-induced
lung endothelial cell barrier disruption and reactive oxygen species (ROS) generation,
thus attenuating pulmonary inflammation [16]. Securinega suffruticosa, a plant species
native to Asia and Europe, mitigates PM2.5-induced lung and vascular inflammation by
inhibiting ROS and downregulating the NOD-like receptor pyrin domain containing-3
(NLRP3) inflammasome signaling pathway [17]. Despite the identification of numerous
herbal medicines with the potential to alleviate PM2.5-induced lung injury, their underlying
mechanisms vary and require further investigation.

Armillaria mellea is a mushroom with recognized medicinal properties, including im-
munomodulatory, anti-inflammatory, and pulmonary protective attributes [18]. A. mellea
reportedly exhibited antioxidant activity [19,20], potentially alleviating respiratory symp-
toms resulting from exposure to air pollution. Mycelia from medicinal mushrooms contain
a variety of constituents that offer numerous biological benefits to human health [21].
However, the capacity of A. mellea mycelia to ameliorate PM2.5-induced respiratory inflam-
mation remains unclear. In this study, we aimed to elucidate whether submerged cultured
A. mellea mycelia can mitigate the adverse effects of PM2.5 on the airways and assess the
underlying mechanisms for improving respiratory inflammation. Using rigorous experi-
mental methodologies, including in vivo and in vitro assessments, we aimed to elucidate
the therapeutic potential of A. mellea mycelia against PM2.5-induced respiratory ailments.

2. Materials and Methods
2.1. Cell Culture

RAW264.7 cells (ATCC TIB-71), a macrophage cell line, were maintained in Dulbecco’s
Modified Eagle Medium (DMEM, Invitrogen, Carlsbad, CA, USA) supplemented with 10%
complement-inactivated fetal bovine serum (HyClone, Logan, UT, USA) at 37 ◦C in a 5%
CO2 atmosphere [9].

2.2. Preparation of Ethanol Extracts of A. mellea Mycelia

The ethanol extracts of A. mellea mycelia were prepared according to previously
established procedures [22]. For 10 d, A. mellea was cultured on potato dextrose agar slants
at 25 ◦C. The A. mellea mycelia were then transferred into 1 L of synthetic culture medium
(consisting of 2% glucose, 1% soybean powder, 0.1% yeast extract, and 0.1% peptone, pH 4.0)
and were incubated at 25 ◦C for an additional 10 d with mild shaking. Subsequently, the
fermentation process was scaled up in 20-ton fermenters for 10 d. The fermented broth was
harvested, lyophilized, ground into a powder, and subjected to ethanolic extraction (using
a ratio of 1:40 w/v in 95% ethanol). The ethanolic suspension was sonicated overnight
and was then centrifuged at 15,000× g for 1 h. The resulting supernatant was subjected
to vacuum concentration, which effectively removed ethanol and water from the final
extract. The prepared extract was then condensed into a paste for use in subsequent
experiments. We then performed high-performance liquid chromatography (HPLC) to
identify and characterize the key components of A. mellea mycelia extract. The analysis
revealed that the major constituents of A. mellea mycelia extract are Armillaridin (retention
time: 19.6 min) and Melledonal C (retention time: 10.1 min), detected at a wavelength of
254 nm (Figure S1).
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2.3. Preparation of PM2.5

Particulate matter with a diameter smaller than 2.5 µm (PM2.5) (RM8785) was pur-
chased from the National Institute of Standards and Technology (Gaithersburg, MD,
USA) [23]. PM2.5 was added to Dulbecco’s Modified Eagle Medium (DMEM) at spec-
ified concentrations for subsequent experiments, as described in our previous study [9].

2.4. Macrophage Phagocytosis Assay

The Phagocytosis Assay Kit (IgG FITC) from Cayman Chemical (Ann Arbor, MI,
USA) was employed to assess the impact of PM2.5 on macrophage phagocytic activity,
as described previously [9]. In brief, RAW264.7 cells were exposed to PM2.5 (30 µg/mL)
for 24 h, followed by incubation with latex beads coated with fluorescent-labeled rabbit
IgG for an additional 4 h. Subsequently, the cells were fixed using 4% paraformaldehyde,
and flow cytometry (Becton Dickinson, San Jose, CA, USA) was utilized to analyze the
phagocytic activity.

2.5. Western Blot Assay

The protein expression levels of iNOS, COX-2, and β-actin were assessed using a
Western blot assay. RAW264.7 cells were treated with ethanol extracts of A. mellea mycelia,
followed by exposure to PM2.5 (30 µg/mL) for 24 h. Cell lysates were prepared in 100
µL of RIPA buffer (Roch, Indianapolis, IN, USA) and subjected to Western blot analysis.
The samples were separated by 10% SDS-PAGE and then transferred onto polyvinylidene
difluoride membranes (Millipore, Billerica, MA, USA). Following blocking with 5% skim
milk, the membranes were incubated with primary antibodies specific against inducible
nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) (Abcam, Boston, MA, USA), re-
spectively. The membrane was then probed with horseradish peroxidase (HRP)-conjugated
secondary antibodies (Millipore). The protein of interest was visualized using ECL Western
Blotting Detection Reagent (BIOMAN, Taipei, Taiwan) and analyzed with an Azure C400
system (Azure Biosystems, Dublin, CA, USA) [24].

2.6. Analysis of Nitric Oxide (NO) and Cytokine Production

RAW264.7 cells were treated with ethanol-extracted A. mellea mycelia and exposed to
PM2.5 (30 µg/mL) for 24 h. The culture supernatant was collected for the determination of
the NO concentration using Griess reagent (Sigma-Aldrich, St. Louis, MO, USA) [25]. The
concentrations of a high mobility group box 1 (HMGB1), interleukin 1β (IL-1β), interferon
γ-induced protein 10 (IP-10), and keratinocyte-derived cytokine (KC) were determined
using a sandwich enzyme-linked immunosorbent assay (R&D Systems, Minneapolis, MN,
USA) [26].

2.7. NF-κB Luciferase Activity Assay

RAW264.7 cells were transfected with an NF-κB-luciferase reporter construct and
subsequently treated with ethanol-extracted A. mellea mycelia before exposure to PM2.5
(30 µg/mL). Following a 24 h incubation period, cell lysates were prepared for a luciferase
assay using the Dual-Luciferase Reporter Assay System (Promega, Madison, WI, USA).
Co-transfection with a β-galactosidase expression vector (Promega) was conducted to
normalize the reporter gene assay [27].

2.8. Implementation of Animal Study

Male BALB/c mice (6 weeks old) were purchased from the National Laboratory
Animal Center (Taipei, Taiwan) in adherence with the Animal Care and Use Guidelines
for Chang Gung University. The experimental protocol was approved by the Institutional
Animal Care and Use Committee (IACUC Approval No.: CGU108-145). The mice were
divided into four groups (with six mice per group): (i) PBS (mock), (ii) PM2.5-exposed,
(iii) A. mellea mycelial extract-treated, and (iv) a combination of PM2.5-exposed with A.
mellea mycelial extract-treated. PM2.5 (25 µg per mouse) was administered by intratracheal
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instillation twice weekly for a total of eight times over four weeks (totaling 200 µg). PBS or
A. mellea mycelial extract (1.5 mg per mouse) was administered through oral gavage once
daily for a total duration of 27 days. On day 28, blood samples were collected from mouse
tail veins using 25-gauge needles for all tested groups. Serum was isolated by centrifugation
at 1000× g for 3 min at room temperature. The mice were euthanized, and bronchoalveolar
lavage fluid (BALF) and lungs were isolated following established protocols, as previously
described [9]. Briefly, the trachea was flushed with normal saline, and the collected fluid
was centrifuged at 500× g for 5 min at 4 ◦C. Cytokine levels in the supernatants were then
analyzed using ELISA.

2.9. Immunohistochemistry (IHC) Analysis

Murine lung tissues were processed for hematoxylin–eosin (H&E) or immunohisto-
chemistry (IHC) staining following established protocols, as detailed in prior work [9]. The
lung sections were immunostained with antibodies targeting interleukin 1-beta (IL-1β)
(ab9722, Abcam) and tumor necrosis factor-α (TNF-α) (ab6671, Abcam), respectively, fol-
lowed by incubation with horseradish peroxidase (HRP)-conjugated secondary antibody
(D39-110, OriGene, Rockville, MD, USA), and developed using the Avidin-Biotin Complex
Kit (ABC Kit, Vector Laboratories, Burlingame, CA, USA). Subsequently, the stained tis-
sues were examined and analyzed using a microscope (AXIO IMAGER M2, Carl Zeiss,
Oberkochen, Germany). Inflammatory cell infiltration in the lungs was assessed using the
following criteria: score 0 for normal lung tissue, score 1 for mild inflammation, score 2 for
moderate inflammation, and score 3 for severe inflammation.

2.10. Statistical Analysis

Statistical significance between the two groups was determined using Student’s t-
test or the Mann–Whitney U test. Comparisons involving more than two groups were
evaluated using one-way ANOVA with Tukey’s post hoc test. A p-value less than 0.05
was considered statistically significant. The figures were generated using Prism Program
(v.9.0.0, GraphPad, San Diego, CA, USA).

3. Results
3.1. A. mellea Mycelia Mitigate PM2.5-Induced Nitric Oxide (NO) Production in Macrophages

We initiated our investigation by assessing the impact of PM2.5 exposure on macrophage
viability and NO production, exposing RAW264.7 macrophages to varying (0–30 µg/mL)
PM2.5 concentrations for 24 h. Our results revealed that exposure to 30 µg/mL PM2.5
did not elicit significant changes in cell viability yet notably increased NO production
(Figure S2). Consequently, we selected the PM2.5 concentration of 30 µg/mL for our
subsequent experiments. To further elucidate the potential anti-inflammatory properties
of the ethanol extracts of A. mellea mycelia, we assessed cytotoxicity and NO production
using the macrophage models. As shown in Figure 1A, the A. mellea mycelial extract at
400 µg/mL did not significantly impact cell viability. The concentrations between 20 and
400 µg/mL significantly and concentration-dependently suppressed the PM2.5-induced
NO production in macrophages (Figure 1B).



Antioxidants 2024, 13, 1381 5 of 13
Antioxidants 2024, 13, x FOR PEER REVIEW 5 of 13 
 

 
Figure 1. A. mellea mycelia diminish PM2.5-induced nitric oxide production in macrophages. 
RAW264.7 cells were pretreated with varying concentrations of A. mellea mycelial extract (0–400 
µg/mL) before exposure to PM2.5 (30 µg/mL) for 24 h. (A) Cell viability was evaluated using the 
MTT assay. (B) Nitric oxide production in the culture supernatant was quantified by measuring 
nitrite levels with Griess reagent. The data were presented as the mean ± standard deviation from 
three independent experiments. Statistical significance was determined using one-way ANOVA 
with Tukey’s post hoc test. *, p < 0.05 compared to A. mellea-untreated group. 

3.2. A. mellea Mycelia Alleviate PM2.5-Associated Inflammatory Mediator Effects in 
Macrophages 

Next, we evaluated the potential PM2.5-induced NF-κB activation by A. mellea myce-
lia using an NF-κB luciferase activity assay. Our results demonstrated that treating mac-
rophages with A. mellea mycelial extract resulted in reduced NF-κB activation (Figure 2A). 
Since NF-κB is a crucial transcription factor responsible for initiating iNOS and COX-2 
expression, we further evaluated the corresponding protein expression levels using West-
ern bloĴing (Figure 2B). The quantification results revealed a significant increase in iNOS 
(Figure 2C) and COX-2 (Figure 2D) protein levels in cells exposed to PM2.5, which were 
markedly decreased following treatment with A. mellea mycelial extract. In addition, we 
observed a notable suppression of the proinflammatory cytokines, IL-1β and TNF-α, in 
macrophages treated with the A. mellea mycelial extract (Figure 3). In contrast, the phago-
cytic activity of the macrophages remained unaffected by treatment with A. mellea myce-
lial extract (Figure S3). These findings strongly suggest that A. mellea mycelia possess po-
tent properties for suppressing the PM2.5-induced production of inflammatory mediators. 

Figure 1. A. mellea mycelia diminish PM2.5-induced nitric oxide production in macrophages.
RAW264.7 cells were pretreated with varying concentrations of A. mellea mycelial extract
(0–400 µg/mL) before exposure to PM2.5 (30 µg/mL) for 24 h. (A) Cell viability was evaluated
using the MTT assay. (B) Nitric oxide production in the culture supernatant was quantified by mea-
suring nitrite levels with Griess reagent. The data were presented as the mean ± standard deviation
from three independent experiments. Statistical significance was determined using one-way ANOVA
with Tukey’s post hoc test. *, p < 0.05 compared to A. mellea-untreated group.

3.2. A. mellea Mycelia Alleviate PM2.5-Associated Inflammatory Mediator Effects in Macrophages

Next, we evaluated the potential PM2.5-induced NF-κB activation by A. mellea mycelia
using an NF-κB luciferase activity assay. Our results demonstrated that treating macrophages
with A. mellea mycelial extract resulted in reduced NF-κB activation (Figure 2A). Since
NF-κB is a crucial transcription factor responsible for initiating iNOS and COX-2 expression,
we further evaluated the corresponding protein expression levels using Western blotting
(Figure 2B). The quantification results revealed a significant increase in iNOS (Figure 2C)
and COX-2 (Figure 2D) protein levels in cells exposed to PM2.5, which were markedly
decreased following treatment with A. mellea mycelial extract. In addition, we observed a
notable suppression of the proinflammatory cytokines, IL-1β and TNF-α, in macrophages
treated with the A. mellea mycelial extract (Figure 3). In contrast, the phagocytic activity
of the macrophages remained unaffected by treatment with A. mellea mycelial extract
(Figure S3). These findings strongly suggest that A. mellea mycelia possess potent properties
for suppressing the PM2.5-induced production of inflammatory mediators.

3.3. A. mellea Mycelia Relieve Pulmonary Inflammation in Long-Term PM2.5 Exposure in
Murine Models

To evaluate the potential of A. mellea mycelial extract to ameliorate PM2.5-induced
inflammation and pathogenesis in the host’s respiratory tract, we established a panel of
long-term PM2.5-exposed murine models (Figure 4). We divided the mice into four groups
as follows: (i) untreated mock, (ii) PM2.5-exposed, (iii) A. mellea mycelial extract-treated,
and (iv) PM2.5-exposed + A. mellea mycelial extract-treated. We exposed the mice to
PM2.5 for 25 d (totaling 200 µg) and simultaneously administered A. mellea mycelial extract
(1.5 mg/mouse) once daily for 27 d. On day 28, we euthanized the mice and harvested
their bronchoalveolar lavage fluid (BALF) for cytokine analysis. We registered significantly
reduced IL-1β, IP-10, KC, and MCP-1 secretion levels in the A. mellea mycelial extract-
treated mice before PM2.5 exposure compared to those exposed to PM2.5 alone (Figure 5).
Subsequently, we prepared lung tissue samples for H&E staining to assess the number
of infiltrated inflammatory cells. The lung tissues isolated from the untreated mock mice
exhibited healthy alveoli and bronchi with minimal inflammatory cell infiltration (Figure 6).
Following exposure to PM2.5, which accumulated in the cells, the bronchial wall thickened,
and inflammatory cell infiltration significantly increased compared to that in the healthy



Antioxidants 2024, 13, 1381 6 of 13

mice. Conversely, when we exposed the mice to PM2.5 and concurrently treated them
with A. mellea mycelial extract, the treatment effectively prevented the development of
an inflammatory response in their lungs. Thus, our study demonstrated that A. mellea
mycelial extract could mitigate PM2.5-induced inflammation and pathogenesis in the
murine respiratory tract.
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Figure 2. A. mellea mycelia mitigate NF-κB activation upon PM2.5 exposure in macrophages.
(A) RAW264.7 cells transfected with NF-κB luciferase reporter and β-galactosidase expression vec-
tor were treated with A. mellea mycelial extract (200 µg/mL) and concurrently exposed to PM2.5
(30 µg/mL) for 24 h. NF-κB luciferase activity was measured and normalized to the expression level
of β-galactosidase. (B) Cell lysates were prepared to assess the expression levels of iNOS and COX-2
using a Western blot assay. Protein expression levels of (C) iNOS and (D) COX-2 were quantified
and normalized to β-actin, respectively. The data were presented as means ± standard deviations
obtained from three independent experiments. Statistical significance was determined using one-way
ANOVA with Tukey’s post hoc test. *, p < 0.05.
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Figure 3. Armillaria mellea mycelia reduce PM2.5-induced inflammatory mediators in macrophages.
RAW264.7 cells were pretreated with A. mellea mycelial extract (200 µg/mL) before exposure to PM2.5
(30 µg/mL) for 24 h. The secretion levels of (A) IL-1β and (B) TNF-α in the culture supernatant were
quantified using an ELISA. The data were expressed as the mean ± standard deviation obtained from
three independent experiments. Statistical significance was assessed using one-way ANOVA with
Tukey’s post hoc test. *, p < 0.05.
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Figure 4. Experimental design and establishment of murine models to evaluate the biological effects
of A. mellea. Mice received intratracheal administration of PM2.5 from day 1 to day 25, totaling 200 µg.
Simultaneously, mice were treated with A. mellea mycelial extract (1.5 mg/mouse) once daily for a
total of 27 days. Upon euthanasia of the mice on day 28, bronchoalveolar lavage fluid (BALF) was
collected for cytokine analysis, and lung tissues were prepared for histopathological examination.
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Figure 5. A. mellea mycelia alleviate PM2.5-induced inflammatory mediators in mice. Mice were
administered PM2.5 and treated with A. mellea mycelial extract according to the experimental design
in Figure 4. Following euthanasia, BALF collected from the mice was subjected to an ELISA to
measure the concentrations of (A) IL-1β, (B) IP-10, (C) KC, and (D) MCP-1. The data are presented
as the mean ± standard deviation obtained from each treatment group. Statistical significance was
determined using the Mann–Whitney U test. *, p < 0.05.
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Figure 6. A. mellea mycelia attenuate PM2.5-induced lung tissue inflammation in murine models.
Mice were administered PM2.5 and treated with A. mellea mycelial extract following the protocol
outlined in Figure 4. (A) Upon euthanasia, lung tissue sections were subjected to H&E staining.
Magnified images are displayed beneath each corresponding cropped area. The yellow arrowheads
indicate macrophages with phagocytosed PM2.5. Scale bars, 10 µm. (B) Inflammatory cell infiltration
in the lungs was assessed using a scoring system adapted from a previous study [9]: score 0, normal
lung tissue; score 1, slight inflammation; score 2, moderate inflammation; score 3, severe inflammation.
Statistical significance was determined using the Mann–Whitney U test. *, p < 0.05.
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3.4. A. mellea Mycelia Improve PM2.5-Induced Pulmonary Inflammation

To investigate whether A. mellea mycelial extract would mitigate PM2.5-induced lung
inflammation, we subjected murine lung tissue samples to IHC analysis. Lung tissues iso-
lated from the PM2.5-exposed mice exhibited a pronounced expression of proinflammatory
cytokines (IL-1β and TNF-α). In the PM2.5-exposed mice treated with A. mellea mycelial
extract, the production of these cytokines was remarkably reduced compared to that in the
healthy group (Figure 7). In addition, we investigated the proinflammatory cytokine levels
in the murine serum, revealing significantly increased IL-1β and sHMGB1 levels in the
serum of PM2.5-exposed mice compared to their day-0 levels (Figure 8). In contrast, mice
treated with A. mellea mycelial extract for 28 d exhibited prominently reduced IL-1β and
sHMGB1 secretion levels compared to those of the PM2.5-exposed group. These results
demonstrate the efficacy of A. mellea mycelial extract in mitigating PM2.5-induced inflam-
mation and the related respiratory system pathogenesis, indicated by the reduced cytokine
secretion and lung inflammatory status restoration in long-term PM2.5-exposed models.
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Figure 7. A. mellea mycelia decrease the expression of IL-1β and TNF-α in PM2.5-exposed lung
tissues. Mice were administered PM2.5 and A. mellea mycelial extract following the protocol outlined
in Figure 4. Murine lung tissues were prepared for immunohistochemical (IHC) staining to assess the
expression levels of IL-1β and TNF-α, respectively. Magnified images are displayed beneath each
corresponding cropped area. Scale bars: 200 µm. The intensity of IL-1β and TNF-α expression in
gastric tissues, as detected by IHC staining, is shown in the right panels. Statistical significance was
determined using the Mann–Whitney U test. *, p < 0.05.
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Figure 8. A. mellea mycelia mitigate PM2.5-induced inflammation in mice. Mice were administered
PM2.5 and treated with A. mellea mycelial extract according to the protocol described in Figure 4.
After euthanizing the mice, serum samples were collected on day 0 and day 28, then subjected to
ELISA to measure the concentrations of (A) IL-1β and (B) sHMGB1. Statistical significance was
assessed using the Mann–Whitney U test. *, p < 0.05.

4. Discussion

In this study, we investigated the potential of A. mellea mycelia to alleviate PM2.5-
induced inflammation and respiratory pathogenesis. Moreover, by exploring the involved
molecular mechanisms, we gained a deeper insight into how A. mellea mycelia mitigate
PM2.5-induced respiratory inflammation and restore pulmonary function. Our results
demonstrated that PM2.5 exposure impaired macrophage functions and exacerbated res-
piratory inflammation, which closely mirrors real-life environmental exposure scenarios.
Building on this well-established platform, we employed these in vitro and in vivo models
to assess the effects of A. mellea mycelia in alleviating PM2.5-induced macrophage inflam-
mation. Our results emphasize the preventive potential of A. mellea mycelia in addressing
PM2.5-related pulmonary pathogenesis.

A. mellea, renowned for its medicinal components such as polysaccharides and sesquiter-
penes, exhibits a broad spectrum of biological activities. Polysaccharides isolated from A.
mellea have been extensively studied and have shown notable health benefits, including
immunoregulatory [28], anti-tumor [29], anti-inflammatory [30], antioxidant [31], neuro-
protective [32], and lung-protective [18] properties. We used ethanol extracts of A. mellea
mycelia in this study, assuming their richness in sesquiterpenes, as described in our re-
cent publication [22]. Furthermore, the sesquiterpenes in A. mellea have been studied
for their anti-tumor [33] and anti-depressant [34] effects. In conjunction with the afore-
mentioned findings, the multifaceted biological activities of A. mellea mycelial sesquiter-
penes support their potential as valuable therapeutic agent sources for addressing various
health conditions.

A. mellea has been valued for its medicinal properties for centuries. In traditional
medicine, such fungal extracts and preparations have been used to treat various health
concerns, including respiratory ailments, gastrointestinal disorders, and neurodegenerative
diseases [18,35,36]. However, A. mellea is a natural product with a complex chemical
composition, and its efficacy may vary depending on its geographical origin, growth
conditions, and extraction methods [19,20]. The standardization of A. mellea preparations
and rigorous quality control measures are essential for ensuring the consistency and the
reproducibility of therapeutic outcomes.

In this study, we established a macrophage model to investigate the effects of A. mellea
mycelial extract on PM2.5-induced inflammation. Our findings revealed that A. mellea
mycelial extract efficiently reduced PM2.5-triggered NO production in macrophages. We
observed a concentration-dependent decrease in NO levels in A. mellea mycelial extract-
treated macrophages, indicating the capacity of this extract to modulate the inflammatory
responses initiated by PM2.5 exposure. Furthermore, A. mellea mycelial extract diminished
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NF-κB activation, leading to the downregulation of key inflammatory mediators such as
iNOS and COX-2. Our findings are consistent with those of previous studies [30,35,37],
demonstrating the antioxidant and anti-inflammatory properties of A. mellea mycelial
extract, including the repression of NO production, the suppression of NF-κB signaling,
and the subsequent inhibition of proinflammatory cytokine production. These results
highlight the potential of A. mellea mycelial extract to mitigate PM2.5-induced inflammation
at the molecular level.

In the murine models of long-term PM2.5 exposure, the administration of A. mellea
mycelial extract significantly alleviated pulmonary inflammation. The reduced secretion
levels of proinflammatory cytokines (IL-1β, IP-10, KC, and MCP-1) in BALF indicate the
anti-inflammatory effects of A. mellea mycelial extract in vivo. Our histological analysis
further corroborated these findings, demonstrating reduced inflammatory cell infiltration
in the lungs of the A. mellea mycelia-treated mice compared to those in the PM2.5-exposed
mice. Although the murine models of long-term PM2.5 exposure provide valuable insights
into the efficacy of A. mellea mycelial extract in alleviating pulmonary inflammation, these
models may not fully recapitulate the complexity of PM2.5 exposure-induced human
respiratory diseases and the biological effects of A. mellea, especially in its broader roles in
immune regulation, anti-inflammatory responses, and antioxidative stress. In this study,
we focused on macrophages as the primary assay platform; however, we acknowledge
that further research is essential to explore A. mellea’s interactions with other cell types and
its overall health impacts. Further disease-specific clinical studies in humans should be
conducted to validate our findings in a translational context.

5. Conclusions

In summary, our study illustrates the potent antioxidant and anti-inflammatory prop-
erties of A. mellea mycelia in managing PM2.5-induced inflammation and respiratory
pathogenesis. In macrophage models, A. mellea mycelia effectively reduced NO production
and suppressed NF-κB activation, thereby reducing inflammatory mediator expression.
Moreover, in long-term PM2.5-exposed murine models, A. mellea mycelia significantly at-
tenuated the secretion of proinflammatory cytokines and restored lung inflammatory status.
The outcomes of our study hold promising potential for developing novel interventions
aimed at mitigating the adverse effects of PM2.5 on respiratory health, thereby providing
invaluable insights into improving human well-being.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox13111381/s1, Figure S1. HPLC profiles of A. mellea mycelial
extract. Figure S2. Assessment of PM2.5-induced nitric oxide production in macrophages. Figure S3.
Effect of A. mellea mycelia on macrophage phagocytosis.
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